This paper gives a method of quantifying small visual differences between 3D mesh models with conforming topology, based on the theory of strain fields. Strain field is a geometric quantity in elasticity which is used...This paper gives a method of quantifying small visual differences between 3D mesh models with conforming topology, based on the theory of strain fields. Strain field is a geometric quantity in elasticity which is used to describe the deformation of elastomer. In this paper we consider the 3D models as objects with elasticity. The further demonstrations are provided: the first is intended to give the reader a visual impression of how our measure works in practice; and the second is to give readers a visual impression of how our measure works in evaluating filter algorithms. Our experiments show that our difference estimates are well correlated with human perception of differences. This work has applications in the evaluation of 3D mesh watermarking, 3D mesh compression reconstruction, and 3D mesh filtering.展开更多
A novel construction algorithm is presented to generate a conforming Voronoi mesh for any planar straight line graph (PSLG). It is also extended to tesselate multiple-intersected PSLGs. All the algorithms are guarante...A novel construction algorithm is presented to generate a conforming Voronoi mesh for any planar straight line graph (PSLG). It is also extended to tesselate multiple-intersected PSLGs. All the algorithms are guaranteed to converge. Examples are given to illustrate its efficiency.展开更多
The optically transparent antenna is becoming a very attractive proposition for various applications, such as wearable devices and vehicle radars. The fabrication of transparent flexible/conformal antennas is a long-l...The optically transparent antenna is becoming a very attractive proposition for various applications, such as wearable devices and vehicle radars. The fabrication of transparent flexible/conformal antennas is a long-lasting interest in academia and industry.However, the preparation of radio-frequency radiators with excellent conductivity and optical transmittance is still quite challenging. Herein, we introduce a facile approach to directly fabricate optically transparent flexible and conformal coplanar waveguide-fed antennas using programmable electrohydrodynamic lithography. Metallic meshes with transmittance above 90%have been successfully created based on the conformal electrohydrodynamic printing of high-viscosity photoresist masks, and the corresponding sheet resistance can be tuned down to ~2 Ω/□. Then, the geometrical structure of the proposed transparent antenna has been systematically optimized because of the basic radio frequency components, including the radiator, feeder line,ground plane, and size of metallic meshes. Optically transparent flexible and conformal antennas are finally obtained, presenting an optical transmittance of 92% and 55%, respectively. The simulated and measured results demonstrate that the transparent antennas with a good optoelectronic performance indeed exhibit a nice electromagnetic behavior. We believe that this newly developed conformal electrohydrodynamic lithography method can be utilized to fabricate a variety of other transparent electronic devices, such as transparent electromagnetic shielding meshes on aircraft canopies, in the future.展开更多
The interactions between incompressible fluid flows and immersed structures are nonlinearmulti-physics phenomena that have applications to a wide range of scientific and engineering disciplines.In this article,we revi...The interactions between incompressible fluid flows and immersed structures are nonlinearmulti-physics phenomena that have applications to a wide range of scientific and engineering disciplines.In this article,we review representative numericalmethods based on conforming and non-conformingmeshes that are currently available for computing fluid-structure interaction problems,with an emphasis on some of the recent developments in the field.A goal is to categorize the selected methods and assess their accuracy and efficiency.We discuss challenges faced by researchers in this field,and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.展开更多
基金supported by the National Basic Research 973 Program of China under Grant No.2006CB303104the National Natural Science Foundation of China under Grant No.60673004an EPSRC Travel Grant.
文摘This paper gives a method of quantifying small visual differences between 3D mesh models with conforming topology, based on the theory of strain fields. Strain field is a geometric quantity in elasticity which is used to describe the deformation of elastomer. In this paper we consider the 3D models as objects with elasticity. The further demonstrations are provided: the first is intended to give the reader a visual impression of how our measure works in practice; and the second is to give readers a visual impression of how our measure works in evaluating filter algorithms. Our experiments show that our difference estimates are well correlated with human perception of differences. This work has applications in the evaluation of 3D mesh watermarking, 3D mesh compression reconstruction, and 3D mesh filtering.
基金Supported by the Science Technology Development Program of Beijing Municipal Education Commission (KM200510011004)
文摘A novel construction algorithm is presented to generate a conforming Voronoi mesh for any planar straight line graph (PSLG). It is also extended to tesselate multiple-intersected PSLGs. All the algorithms are guaranteed to converge. Examples are given to illustrate its efficiency.
基金supported by the National Key Research and Development Program of China (Grant No. 2021YFB3200703)the National Natural Science Foundation of China (Grant Nos. 52175537, 51975235, and52188102)。
文摘The optically transparent antenna is becoming a very attractive proposition for various applications, such as wearable devices and vehicle radars. The fabrication of transparent flexible/conformal antennas is a long-lasting interest in academia and industry.However, the preparation of radio-frequency radiators with excellent conductivity and optical transmittance is still quite challenging. Herein, we introduce a facile approach to directly fabricate optically transparent flexible and conformal coplanar waveguide-fed antennas using programmable electrohydrodynamic lithography. Metallic meshes with transmittance above 90%have been successfully created based on the conformal electrohydrodynamic printing of high-viscosity photoresist masks, and the corresponding sheet resistance can be tuned down to ~2 Ω/□. Then, the geometrical structure of the proposed transparent antenna has been systematically optimized because of the basic radio frequency components, including the radiator, feeder line,ground plane, and size of metallic meshes. Optically transparent flexible and conformal antennas are finally obtained, presenting an optical transmittance of 92% and 55%, respectively. The simulated and measured results demonstrate that the transparent antennas with a good optoelectronic performance indeed exhibit a nice electromagnetic behavior. We believe that this newly developed conformal electrohydrodynamic lithography method can be utilized to fabricate a variety of other transparent electronic devices, such as transparent electromagnetic shielding meshes on aircraft canopies, in the future.
基金support from the National Science Foundation under Grant Numbers 0728610 and 0715021,respectively.
文摘The interactions between incompressible fluid flows and immersed structures are nonlinearmulti-physics phenomena that have applications to a wide range of scientific and engineering disciplines.In this article,we review representative numericalmethods based on conforming and non-conformingmeshes that are currently available for computing fluid-structure interaction problems,with an emphasis on some of the recent developments in the field.A goal is to categorize the selected methods and assess their accuracy and efficiency.We discuss challenges faced by researchers in this field,and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.