Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high prepar...Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high preparation costs,low yields,environmental pollution during synthesis,and challenges in regenerating the adsorbent.This study proposes a novel approach to address these limitations by developing nitrogen-doped three-dimensional(3D)polyvinyl alcohol(PVA)crosslinked graphene sponges(N-PGA)using a cross-linking method with ammonium carbonate.This method offers a relatively mild,environmentally friendly approach.Ammonium carbonate serves as both a reducing and modifying agent,facilitating the formation of the intrinsic structure of N-PGA and acting as a nitrogen source.Meanwhile,PVA is utilized as the cross-linking agent.The results demonstrate that N-PGA exhibits a favorable internal 3D hierarchical porous structure and possesses robust mechanical properties.The measured specific surface area(BET)of N-PGA was as high as406.538 m^(2)·g^(-1),which was favorable for its efficient adsorption of Congo red(CR)dye molecules.At an initial concentration of 50 mg·L^(-1),N-PGA achieved an impressive removal rate of 89.6%and an adsorption capacity of 112 mg·g^(-1)for CR dye.Furthermore,it retained 79%of its initial adsorption capacity after 10 cycles,demonstrating excellent regeneration performance.In summary,the synthesized N-PGA displays remarkable efficacy in the adsorption of CR dye in wastewater,opening up new possibilities for utilizing 3D porous graphene nanomaterials as efficient adsorbents in wastewater treatment.展开更多
A facile eco-friendly hydrothermal route (180 ℃, 12.0 h) has been developed for the first time to the uniform hierarchical porous MgBO2(OH) microspheres without the aid of any organic additive, surfactant or temp...A facile eco-friendly hydrothermal route (180 ℃, 12.0 h) has been developed for the first time to the uniform hierarchical porous MgBO2(OH) microspheres without the aid of any organic additive, surfactant or template, by using the abundant MgCl2·6H2O, H3BO3 and NaOH as the raw materials. The as-obtained porous microspheres exhibit a specific surface area of 94.752 mg·g-1, pore volume of 0.814 cm3.g-1, and ca. 84.0% of which have a diameter of 2.25-3.40 μm. The thermal decomposition of the porous MgBO2(OH) microspheres (650 ℃, 2.5 ℃. min-l) leads to the porous Mg2B2O5 rnicrospheres with well-retained morphology. When utilized as the adsorbents for the removal of CR from mimic waste water, the present porous MgBO2(OH) microspheres exhibit satisfactory adsorption capacity, with the maximum adsorption capacity qm of 309.1 mg-g-1, much higher than that derived from most of the referenced adsorbents. This opens a new window for the facile green hydrothermal synthesis of the hierarchical porous MgBO2(OH) microspheres, and extends the potential application of the 3D hierarchical porous metal borates as high-efficiency adsorbents for organic dyes removal.展开更多
Modified aluminum slag (MAS) was applied as an adsorbent for Congo red (CR) prepared by the hydrothermal treatment of Ca(OH)<sub>2</sub>. At 25°C, with a MAS dosage of 0.3 g, initial CR concentration ...Modified aluminum slag (MAS) was applied as an adsorbent for Congo red (CR) prepared by the hydrothermal treatment of Ca(OH)<sub>2</sub>. At 25°C, with a MAS dosage of 0.3 g, initial CR concentration of 100 mg/L and initial pH = 5, and the adsorption time was 40 min, the CR removal efficiency was 98.41%. The adsorption trend of CR conformed to the second-order kinetics, and the adsorption isotherm follows the Freundlich isotherm model. Compared with RAS, MAS has a larger pore volume and specific surface area. The mechanism of action of MAS on CR was the interaction between membrane diffusion and internal diffusion, and the adsorption rate during the membrane diffusion was the fastest.展开更多
BACKGROUND Glomerulopathy with fibrillary deposits is not uncommon in routine nephropathology practice,with amyloidosis and fibrillary glomerulonephritis being the two most frequently encountered entities.Renal amyloi...BACKGROUND Glomerulopathy with fibrillary deposits is not uncommon in routine nephropathology practice,with amyloidosis and fibrillary glomerulonephritis being the two most frequently encountered entities.Renal amyloid heavy and light chain(AHL)is relatively uncommon and its biopsy diagnosis is usually limited to cases that show strong equivalent staining for a single immunoglobulin(Ig)heavy chain and a single light chain,further supported by mass spectrometry(MS)and serum studies for monoclonal protein.But polyclonal light chain staining can pose a challenge.CASE SUMMARY Herein we present a challenging case of renal AHL with polyclonal and polytypic Ig gamma(IgG)staining pattern by immunofluorescence.The patient is a 62-yearold Caucasian male who presented to an outside institution with a serum creatinine of up to 8.1 mg/dL and nephrotic range proteinuria.Despite the finding of a polyclonal and polytypic staining pattern on immunofluorescence,ultrastructural study of the renal biopsy demonstrated the presence of fibrils with a mean diameter of 10 nm.Congo red was positive while DNAJB9 was negative.MS suggested a diagnosis of amyloid AHL type with IgG and lambda,but kappa light chains were also present supporting the immunofluorescence staining results.Serum immunofixation studies demonstrated IgG lambda monoclonal spike.The patient was started on chemotherapy.The chronic renal injury however was quite advanced and he ended up needing dialysis shortly after.CONCLUSION Tissue diagnosis of AHL amyloid can be tricky.Thorough confirmation using other available diagnostic techniques is recommended in such cases.展开更多
This work contributes to the improvement of the azo group which has outstanding electron donating capability and serves as excellent ligands in the field of coordination chemistry. The authors of this research deal wi...This work contributes to the improvement of the azo group which has outstanding electron donating capability and serves as excellent ligands in the field of coordination chemistry. The authors of this research deal with the microwave irradiation synthesis of some new Schiff bases derived from the biologically effective and photoactive Congo red [Ia-g]. The design and preparation of the structurally reversed analogous compounds to the above compounds [IIIa-d] were accomplished using the conventional chemical methods by keeping the benzidine moiety of Congo red as the nucleus of the synthesized compounds, doubling the number of the azo groups and inverting the way of their conjugation order with the azomethine groups. The structures of the newly prepared compounds were established on the basis of their FTIR and H1 NMR spectral data.展开更多
The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etc...The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etching of silicon in alkaline solution using wetting agents is discussed. Transformation of crystallographic plane of n-Si (211) to nPSi (100) has occurred on using n-propanol as wetting agent. The rate of pore formation was 0.02478 - 0.02827 μm/min, which was heavily dependent upon the concentration of the etchant containing wetting agents, allowing patterned porous silicon formation through selective doping of the substrate. A particle size of 15 nm for porous nano-silicon was calculated from the XRD data. Porosity of PS layers is about 10%. Pore diameter and porous layer thickness are 0.0614 nm and 16 μm, respectively. The energy gap of the produced porous silicon is 3.3 eV. Furthermore, the combination of PS with Congo Red, which are nanostructured due to their deposition within the porous matrix is discussed. Such nano compounds offer broad avenue of new and interesting properties depending on the involved materials as well as on their morphology. Chemical route was utilized as the host material to achieve pores filling. They were impregnated with Congo Red, which gave good results for the porous silicon as a promising pH sensor.展开更多
The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by us...The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by using XRD, FT-IR, SEM/EDX, TGA and BET. XRD and SEM studies proved that MWCNTs phases did not enter into the interlayers of LDHs, they dispersed over the LDHs surface homogeneously. BET results showed that MWCNTs/LDHs possessed hierarchically porous nanostructure with large surface area (124.974 m^2/g) and great pore volume (0.604 cm^3/g). Batch experiments were conducted to study the adsorption efficiency of Congo red (CR). It was worthy to note that MWCNTs/LDHs exhibited excellent adsorption performance with the maximum CR adsorption capacity of 595.8 mg/g in weak acidic environment. The adsorption kinetics and isotherm parameters can be well described by the pseudo-second-order and the Langmuir isotherm models, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.展开更多
A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the...A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe^2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses.展开更多
This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide.Central composite design was applied to conduct the experiments at differen...This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide.Central composite design was applied to conduct the experiments at different levels by altering three operating parameters.Activation temperature(766-934℃),CO2 flow rate(0.8-2.8 L·min^-1)and activation time(5-55 min)were the variables examined in this study.The effect of parameters on the specific surface area,total pore volume and burn-out rate of activated carbon was studied,and the influential parameters of methylene blue adsorption value were identified employing analysis of variance.The optimum conditions for maximum methylene blue adsorption value were:activation temperature=900℃,activation time=29.05 min and CO2 flow rate=1.8 L·min(-1).The activated carbon produced under optimum conditions was characterized by BET,FTIR and SEM.The adsorption behavior on congo red was studied.The effect of parameters on the adsorbent dosage,temperature,PH and initial congo red concentration was investigated.The adsorption properties of the activated carbon were investigated by kinetics.The equilibrium removal rate and maximum adsorption capacity reaches up to 94.72%,234 mg·g^-1,respectively when initial congo red concentration is 200 mg·L^-1 under adsorbent dosage(0.8 g·L^-1),temperature(30℃),PH7.展开更多
Mg/Al/Fe layered double hydroxide(MAF-LDH1) was prepared by solvothermal method with the sodium dodecyl sulfate as the template, and the ethanol system was benefit to growth of sample. The nature in the resulting MAF-...Mg/Al/Fe layered double hydroxide(MAF-LDH1) was prepared by solvothermal method with the sodium dodecyl sulfate as the template, and the ethanol system was benefit to growth of sample. The nature in the resulting MAF-LDH was investigated by X-ray diffraction, field emission scanning electron microscopy, Fourier transformed infrared spectra, thermogravimetric analysis, and N2 adsorption-desorption.The morphology of MAF-LDH1 is petal-like with the size of 400-500 nm and the thickness about 10-20 nm. The adsorption performance of the samples was evaluated by absorption of the Congo red(CR) solutions. Compared with Mg/Al layered double hydroxide(MA-LDH), the maximum adsorption capacities of the MAF-LDH1 samples were 943.4 mg/g which was greatly enhanced. Furthermore, after seven cycling tests, the adsorption performance was still up to 90%. Theoretical calculation results revealed that the adsorption process was spontaneous and followed the pseudo-second-order kinetic model and Freundlich model. This work provides a promising alternative strategy to enhance the adsorptive properties of hydrotalcite-like materials.展开更多
Radio frequency (RF) underwater discharge operation was performed for different liquid conductivities driven by different frequencies ranging from 13.56 MHz to 60 MHz, and its application to organic degradation was ...Radio frequency (RF) underwater discharge operation was performed for different liquid conductivities driven by different frequencies ranging from 13.56 MHz to 60 MHz, and its application to organic degradation was investigated. The RF underwater discharge was observed to be generated within the bubble at electrode surface formed by RF and plasma heating. It was shown that the sizes of the bubbles and plasmas increased as the driving frequency and the input power went up. The breakdown voltage decreased rapidly with the increase of the water conductivity and driving frequency. Comparative experiments of the UV-VIS absorbance spectra of Congo Red solution before and after discharge suggested effective degradation of the organic dye due to the active species generated during the discharge, such as .OH, .O, .H, etc. revealed by optical emission spectroscopy. The results show that higher exciting frequency and lower conduc- tivity of the solution are more effective for organic degradation. With the combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Liquid Chromatography-Mass Spectrometry (LC- MS) data, one possible degradation process was proposed and the main conceivable components and structures of the products were also presented.展开更多
A series of carboxymethyl cellulose/organic montmorillonite (CMC/OMMT) nanocomposites with different weight ratios of carboxymethyl cellulose (CMC) to organic montmorillonite (OMMT) were synthesized under differ...A series of carboxymethyl cellulose/organic montmorillonite (CMC/OMMT) nanocomposites with different weight ratios of carboxymethyl cellulose (CMC) to organic montmorillonite (OMMT) were synthesized under different conditions. The nanocomposites were characterized by the Fourier transform infrared (FT-IR) spectrophotometer, X-ray diffraction (XRD) method, transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal gravimetric (TG) analysis. The results showed that the introduction of CMC may have different influences on the physico-chemical properties of OMMT and intercalated-exfoliated nanostructures were formed in the nanocomposites. The effects of different reaction conditions on the adsorption capacity of samples for Congo Red (CR) dye were investigated by controlling the amount ofhexadecyl trimethyl ammonium bromide (CTAB), the weight ratio of CMC to OMMT, the reaction time, and the reaction temperature. Results from the adsorption experiment showed that the adsorption capacity of the nanocomposites can reach 171.37 rag/g, with the amount of CTAB being 1.0 cation exchange capacity (CEC) of MMT, the weight ratio of CMC to OMMT being l:l, the reaction time being 6 h, and the reaction temperature being 60~C. The CMC/OMMT nanocomposite can be used as a potential adsorbent to remove CR dye from an aqueous solution.展开更多
We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an avera...We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.展开更多
In this study, adsorption of Congo red dye onto activated carbon prepared from Jujube (Ziziphus Mauritiania) seeds with phosphoric acid as the activating agent was investigated. Batch adsorption studies were carried o...In this study, adsorption of Congo red dye onto activated carbon prepared from Jujube (Ziziphus Mauritiania) seeds with phosphoric acid as the activating agent was investigated. Batch adsorption studies were carried out to study the influence of contact time, adsorbent dosage and initial dye concentration on the adsorption. The data was analysed using pseudo-first order and pseudo-second order kinetic models. The pseudo-second order kinetic model was found to describe the adsorption more effectively with a perfect correlation coefficient of unity. The rate constant, K was obtained as 0.182 (g/mg min) and the calculated qe (9.81) is very close to the experimental value (9.78). A high correlation coefficient obtained when the data was analysed with the intraparticle diffusion rate equation, revealed the presence of intraparticle diffusion in the adsorption process even though it is not the sole controlling step as shown by the value of the intercept (C ≠ 0). Isotherm studies showed that there is high correlation in each case when the data was modelled with Langmuir, Freundlich, Temkin and Dubinin-Radushkevic isotherm models but the best fit was obtained with the Freundlich model with R2 = 0.9991, adsorption capacity, KF = 19.73 (mg/g)(mg/L)1/n and n = 1.563 indicating the adsorption is favourable and occurs on a heterogeneous surface by multilayer. The study showed that activated carbon from jujube seeds is an effective adsorbent for the removal of Congo red dye from solution.展开更多
Equilibrium adsorption studies for detoxification of Congo Red (CR) dye from single component model wastewater by powdered watermelon rinds and neem leaves adsorbents were carried out with the view to test the applica...Equilibrium adsorption studies for detoxification of Congo Red (CR) dye from single component model wastewater by powdered watermelon rinds and neem leaves adsorbents were carried out with the view to test the applicability of the adsorption process to Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Harkins-Jura isotherm models. The values of correlation coefficient, R2 (0.9359 - 0.9998), showed that all the experimental data fitted the linear plots of the tested isotherm models. Dubinin-Radushkevich’s monolayer maximum adsorption capacity qD (20.72 - 26.06 mg/g) is better than Langmuir’s qm (18.62 - 24.75 mg/g) for both adsorbents with the capacities higher for adsorption on watermelon rind than on neem leaves. Values of Langmuir separation factor (RL) suggest unfavourable adsorption processes (i.e. chemisorption) of the dye on both the adsorbents, while Freundlich constant (nF) indicates unfavourable process only for CR adsorption onto neem leaves. The Dubinin-Radushkevich’s mean free energy of adsorption, E (0.29 - 0.32 kJ/mol), suggests physical adsorption processes. Values for Temkin’s heat of adsorption, bT (-0.95 to 0.74 kJ/mol), also show physical adsorption process.展开更多
In this study nanoporous NiO was prepared using Ni(CH3COO)2,4H2O, folic acid and water as starting material, template and solvent respectively, by sol gel method followed by calcination at 400℃. The solid product was...In this study nanoporous NiO was prepared using Ni(CH3COO)2,4H2O, folic acid and water as starting material, template and solvent respectively, by sol gel method followed by calcination at 400℃. The solid product was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) Fourier transform infrared (FT-IR) and photoluminescence (PL) techniques. The particle size of the nanoparticles estimated by XRD was in good agreement with the particle size obtained by TEM analysis (4-5nm). It was also found that the prepared nanoporous NiO show very good activity for photodegredation of dye organic pollutants such as Congo red (91%) during 1.5 hours.展开更多
The red ceramic pigment is widely used in industrial production, but the pigments with pure color and bright red performance are rare. Therefore, it is important to study and develop new red ceramic pigment with perfe...The red ceramic pigment is widely used in industrial production, but the pigments with pure color and bright red performance are rare. Therefore, it is important to study and develop new red ceramic pigment with perfect color performance. This paper reports the preparation of Cr-doped YAlO_3 red ceramic pigment rendering by sol-gel method with high temperature resistance, good color and proposed color mechanism. The prepared samples were characterized by XRD, SEM, EDS and UV-vis, and the effects of Cr on the crystal structure, color rendering properties and color mechanism were discussed. The results showed that the optimum concentration of coloring agent(Cr) in Cr:YAlO_3 red ceramic pigment was 3 at.%. The main color mechanism was also discussed. Compared with the solid phase sintering and precipitation methods for the synthesis of red ceramic pigment, the sol-gel method possessed obvious advantages, such as perfect mixing of the raw materials, uniform dispersion of doping ions and the pure color.展开更多
Based on the principle of synthesis, a new method was put forward to dispose Congo Red anion-containing dyestuff from wastewater and its feasibility was also examined. The principle of the method is described as follo...Based on the principle of synthesis, a new method was put forward to dispose Congo Red anion-containing dyestuff from wastewater and its feasibility was also examined. The principle of the method is described as follows: Mg2+ and Al3+ are hydrolyzed to form Mg/Al-LDH by adding Mg2+, Al3+ and NaOH in wastewater containing anion dyestuff, which is selectively intercalated with the interlayer of LDH in order to balance positive structural charge. While Mg2+ and Al3+ are co-precipitated to form LDH, the anion dyestuff in wastewater will be removed by LDH synthesized in-situ, as is confirmed by X-ray diffraction analysis of settlings and chemical analysis of aqueous samples. In this work, we studied the influence of Mg/Al mole ratio, pH value, time and temperature of reaction on the removal of anion dyestuff and the use of Mg and Al. The experimental results showed the maximum removal efficiency of anion dyestuff could be attained when pH value was 9.0, and Mg/Al mol ratio was 2∶1, reaction duration was 2 hours, and the effect of temperature was not remarkable, and the removal efficiency could reach 100%. Meanwhile, the Mg and Al added could be made good use of. This technology has the advantage of extraordinary efficiency of wastewater disposal.展开更多
基金supported by the National Natural Science Foundation of China(51671052,51750110513,52250610222)the Fundamental Research Funds for the Central Universities(N182502042)the Liao Ning Revitilization Talents Program(XLYC1902105)。
文摘Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high preparation costs,low yields,environmental pollution during synthesis,and challenges in regenerating the adsorbent.This study proposes a novel approach to address these limitations by developing nitrogen-doped three-dimensional(3D)polyvinyl alcohol(PVA)crosslinked graphene sponges(N-PGA)using a cross-linking method with ammonium carbonate.This method offers a relatively mild,environmentally friendly approach.Ammonium carbonate serves as both a reducing and modifying agent,facilitating the formation of the intrinsic structure of N-PGA and acting as a nitrogen source.Meanwhile,PVA is utilized as the cross-linking agent.The results demonstrate that N-PGA exhibits a favorable internal 3D hierarchical porous structure and possesses robust mechanical properties.The measured specific surface area(BET)of N-PGA was as high as406.538 m^(2)·g^(-1),which was favorable for its efficient adsorption of Congo red(CR)dye molecules.At an initial concentration of 50 mg·L^(-1),N-PGA achieved an impressive removal rate of 89.6%and an adsorption capacity of 112 mg·g^(-1)for CR dye.Furthermore,it retained 79%of its initial adsorption capacity after 10 cycles,demonstrating excellent regeneration performance.In summary,the synthesized N-PGA displays remarkable efficacy in the adsorption of CR dye in wastewater,opening up new possibilities for utilizing 3D porous graphene nanomaterials as efficient adsorbents in wastewater treatment.
基金Supported by the National Natural Science Foundation of China(21276141)the State Key Laboratory of Chemical Engineering,China(SKL-Ch E-17A03)
文摘A facile eco-friendly hydrothermal route (180 ℃, 12.0 h) has been developed for the first time to the uniform hierarchical porous MgBO2(OH) microspheres without the aid of any organic additive, surfactant or template, by using the abundant MgCl2·6H2O, H3BO3 and NaOH as the raw materials. The as-obtained porous microspheres exhibit a specific surface area of 94.752 mg·g-1, pore volume of 0.814 cm3.g-1, and ca. 84.0% of which have a diameter of 2.25-3.40 μm. The thermal decomposition of the porous MgBO2(OH) microspheres (650 ℃, 2.5 ℃. min-l) leads to the porous Mg2B2O5 rnicrospheres with well-retained morphology. When utilized as the adsorbents for the removal of CR from mimic waste water, the present porous MgBO2(OH) microspheres exhibit satisfactory adsorption capacity, with the maximum adsorption capacity qm of 309.1 mg-g-1, much higher than that derived from most of the referenced adsorbents. This opens a new window for the facile green hydrothermal synthesis of the hierarchical porous MgBO2(OH) microspheres, and extends the potential application of the 3D hierarchical porous metal borates as high-efficiency adsorbents for organic dyes removal.
文摘Modified aluminum slag (MAS) was applied as an adsorbent for Congo red (CR) prepared by the hydrothermal treatment of Ca(OH)<sub>2</sub>. At 25°C, with a MAS dosage of 0.3 g, initial CR concentration of 100 mg/L and initial pH = 5, and the adsorption time was 40 min, the CR removal efficiency was 98.41%. The adsorption trend of CR conformed to the second-order kinetics, and the adsorption isotherm follows the Freundlich isotherm model. Compared with RAS, MAS has a larger pore volume and specific surface area. The mechanism of action of MAS on CR was the interaction between membrane diffusion and internal diffusion, and the adsorption rate during the membrane diffusion was the fastest.
文摘BACKGROUND Glomerulopathy with fibrillary deposits is not uncommon in routine nephropathology practice,with amyloidosis and fibrillary glomerulonephritis being the two most frequently encountered entities.Renal amyloid heavy and light chain(AHL)is relatively uncommon and its biopsy diagnosis is usually limited to cases that show strong equivalent staining for a single immunoglobulin(Ig)heavy chain and a single light chain,further supported by mass spectrometry(MS)and serum studies for monoclonal protein.But polyclonal light chain staining can pose a challenge.CASE SUMMARY Herein we present a challenging case of renal AHL with polyclonal and polytypic Ig gamma(IgG)staining pattern by immunofluorescence.The patient is a 62-yearold Caucasian male who presented to an outside institution with a serum creatinine of up to 8.1 mg/dL and nephrotic range proteinuria.Despite the finding of a polyclonal and polytypic staining pattern on immunofluorescence,ultrastructural study of the renal biopsy demonstrated the presence of fibrils with a mean diameter of 10 nm.Congo red was positive while DNAJB9 was negative.MS suggested a diagnosis of amyloid AHL type with IgG and lambda,but kappa light chains were also present supporting the immunofluorescence staining results.Serum immunofixation studies demonstrated IgG lambda monoclonal spike.The patient was started on chemotherapy.The chronic renal injury however was quite advanced and he ended up needing dialysis shortly after.CONCLUSION Tissue diagnosis of AHL amyloid can be tricky.Thorough confirmation using other available diagnostic techniques is recommended in such cases.
文摘This work contributes to the improvement of the azo group which has outstanding electron donating capability and serves as excellent ligands in the field of coordination chemistry. The authors of this research deal with the microwave irradiation synthesis of some new Schiff bases derived from the biologically effective and photoactive Congo red [Ia-g]. The design and preparation of the structurally reversed analogous compounds to the above compounds [IIIa-d] were accomplished using the conventional chemical methods by keeping the benzidine moiety of Congo red as the nucleus of the synthesized compounds, doubling the number of the azo groups and inverting the way of their conjugation order with the azomethine groups. The structures of the newly prepared compounds were established on the basis of their FTIR and H1 NMR spectral data.
文摘The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etching of silicon in alkaline solution using wetting agents is discussed. Transformation of crystallographic plane of n-Si (211) to nPSi (100) has occurred on using n-propanol as wetting agent. The rate of pore formation was 0.02478 - 0.02827 μm/min, which was heavily dependent upon the concentration of the etchant containing wetting agents, allowing patterned porous silicon formation through selective doping of the substrate. A particle size of 15 nm for porous nano-silicon was calculated from the XRD data. Porosity of PS layers is about 10%. Pore diameter and porous layer thickness are 0.0614 nm and 16 μm, respectively. The energy gap of the produced porous silicon is 3.3 eV. Furthermore, the combination of PS with Congo Red, which are nanostructured due to their deposition within the porous matrix is discussed. Such nano compounds offer broad avenue of new and interesting properties depending on the involved materials as well as on their morphology. Chemical route was utilized as the host material to achieve pores filling. They were impregnated with Congo Red, which gave good results for the porous silicon as a promising pH sensor.
基金Project(21476269)supported by the National Natural Science Foundation of ChinaProject(14JJ2014)supported by Natural Science Foundation of Hunan Province,China
文摘The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by using XRD, FT-IR, SEM/EDX, TGA and BET. XRD and SEM studies proved that MWCNTs phases did not enter into the interlayers of LDHs, they dispersed over the LDHs surface homogeneously. BET results showed that MWCNTs/LDHs possessed hierarchically porous nanostructure with large surface area (124.974 m^2/g) and great pore volume (0.604 cm^3/g). Batch experiments were conducted to study the adsorption efficiency of Congo red (CR). It was worthy to note that MWCNTs/LDHs exhibited excellent adsorption performance with the maximum CR adsorption capacity of 595.8 mg/g in weak acidic environment. The adsorption kinetics and isotherm parameters can be well described by the pseudo-second-order and the Langmuir isotherm models, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.
基金supported by National Natural Science Foundation of China(No.51377075)the Natural Science Foundation of Jiangsu Province of China(Nos.BK20131412,BK20150951)
文摘A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe^2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses.
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China(LY16B060014)the Program for the Joint Research Fund for Overseas Chinese,Hong Kong and Macao Scholars of National Natural Science Foundation of China(Grant No.21628601)the Innovation and Development of Marine Economy Demonstration。
文摘This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide.Central composite design was applied to conduct the experiments at different levels by altering three operating parameters.Activation temperature(766-934℃),CO2 flow rate(0.8-2.8 L·min^-1)and activation time(5-55 min)were the variables examined in this study.The effect of parameters on the specific surface area,total pore volume and burn-out rate of activated carbon was studied,and the influential parameters of methylene blue adsorption value were identified employing analysis of variance.The optimum conditions for maximum methylene blue adsorption value were:activation temperature=900℃,activation time=29.05 min and CO2 flow rate=1.8 L·min(-1).The activated carbon produced under optimum conditions was characterized by BET,FTIR and SEM.The adsorption behavior on congo red was studied.The effect of parameters on the adsorbent dosage,temperature,PH and initial congo red concentration was investigated.The adsorption properties of the activated carbon were investigated by kinetics.The equilibrium removal rate and maximum adsorption capacity reaches up to 94.72%,234 mg·g^-1,respectively when initial congo red concentration is 200 mg·L^-1 under adsorbent dosage(0.8 g·L^-1),temperature(30℃),PH7.
基金Funded by the Science and Technology Development Plan Project of Shandong Province,China(No.2013GSF11714)the Open Project of Hunan Sustentation Fund:Key Laboratory of Applied Environmental Photocatalysis,China(No.ccsu-KF-1501)
文摘Mg/Al/Fe layered double hydroxide(MAF-LDH1) was prepared by solvothermal method with the sodium dodecyl sulfate as the template, and the ethanol system was benefit to growth of sample. The nature in the resulting MAF-LDH was investigated by X-ray diffraction, field emission scanning electron microscopy, Fourier transformed infrared spectra, thermogravimetric analysis, and N2 adsorption-desorption.The morphology of MAF-LDH1 is petal-like with the size of 400-500 nm and the thickness about 10-20 nm. The adsorption performance of the samples was evaluated by absorption of the Congo red(CR) solutions. Compared with Mg/Al layered double hydroxide(MA-LDH), the maximum adsorption capacities of the MAF-LDH1 samples were 943.4 mg/g which was greatly enhanced. Furthermore, after seven cycling tests, the adsorption performance was still up to 90%. Theoretical calculation results revealed that the adsorption process was spontaneous and followed the pseudo-second-order kinetic model and Freundlich model. This work provides a promising alternative strategy to enhance the adsorptive properties of hydrotalcite-like materials.
基金supported by Natural Science Foundation of Jiangsu Education Committee of China (No.09KJA140005)
文摘Radio frequency (RF) underwater discharge operation was performed for different liquid conductivities driven by different frequencies ranging from 13.56 MHz to 60 MHz, and its application to organic degradation was investigated. The RF underwater discharge was observed to be generated within the bubble at electrode surface formed by RF and plasma heating. It was shown that the sizes of the bubbles and plasmas increased as the driving frequency and the input power went up. The breakdown voltage decreased rapidly with the increase of the water conductivity and driving frequency. Comparative experiments of the UV-VIS absorbance spectra of Congo Red solution before and after discharge suggested effective degradation of the organic dye due to the active species generated during the discharge, such as .OH, .O, .H, etc. revealed by optical emission spectroscopy. The results show that higher exciting frequency and lower conduc- tivity of the solution are more effective for organic degradation. With the combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Liquid Chromatography-Mass Spectrometry (LC- MS) data, one possible degradation process was proposed and the main conceivable components and structures of the products were also presented.
基金supported by the Special Fund for National Forestry Industry Scientific Research in the Public Interest of China (Grant No. 201104004)the Natural Science Foundation of China (Grant No. 20867004)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region
文摘A series of carboxymethyl cellulose/organic montmorillonite (CMC/OMMT) nanocomposites with different weight ratios of carboxymethyl cellulose (CMC) to organic montmorillonite (OMMT) were synthesized under different conditions. The nanocomposites were characterized by the Fourier transform infrared (FT-IR) spectrophotometer, X-ray diffraction (XRD) method, transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal gravimetric (TG) analysis. The results showed that the introduction of CMC may have different influences on the physico-chemical properties of OMMT and intercalated-exfoliated nanostructures were formed in the nanocomposites. The effects of different reaction conditions on the adsorption capacity of samples for Congo Red (CR) dye were investigated by controlling the amount ofhexadecyl trimethyl ammonium bromide (CTAB), the weight ratio of CMC to OMMT, the reaction time, and the reaction temperature. Results from the adsorption experiment showed that the adsorption capacity of the nanocomposites can reach 171.37 rag/g, with the amount of CTAB being 1.0 cation exchange capacity (CEC) of MMT, the weight ratio of CMC to OMMT being l:l, the reaction time being 6 h, and the reaction temperature being 60~C. The CMC/OMMT nanocomposite can be used as a potential adsorbent to remove CR dye from an aqueous solution.
基金the financial support of Vietnam Academy of Science and Technology under project VAST01.04/18-19.
文摘We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.
文摘In this study, adsorption of Congo red dye onto activated carbon prepared from Jujube (Ziziphus Mauritiania) seeds with phosphoric acid as the activating agent was investigated. Batch adsorption studies were carried out to study the influence of contact time, adsorbent dosage and initial dye concentration on the adsorption. The data was analysed using pseudo-first order and pseudo-second order kinetic models. The pseudo-second order kinetic model was found to describe the adsorption more effectively with a perfect correlation coefficient of unity. The rate constant, K was obtained as 0.182 (g/mg min) and the calculated qe (9.81) is very close to the experimental value (9.78). A high correlation coefficient obtained when the data was analysed with the intraparticle diffusion rate equation, revealed the presence of intraparticle diffusion in the adsorption process even though it is not the sole controlling step as shown by the value of the intercept (C ≠ 0). Isotherm studies showed that there is high correlation in each case when the data was modelled with Langmuir, Freundlich, Temkin and Dubinin-Radushkevic isotherm models but the best fit was obtained with the Freundlich model with R2 = 0.9991, adsorption capacity, KF = 19.73 (mg/g)(mg/L)1/n and n = 1.563 indicating the adsorption is favourable and occurs on a heterogeneous surface by multilayer. The study showed that activated carbon from jujube seeds is an effective adsorbent for the removal of Congo red dye from solution.
文摘Equilibrium adsorption studies for detoxification of Congo Red (CR) dye from single component model wastewater by powdered watermelon rinds and neem leaves adsorbents were carried out with the view to test the applicability of the adsorption process to Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Harkins-Jura isotherm models. The values of correlation coefficient, R2 (0.9359 - 0.9998), showed that all the experimental data fitted the linear plots of the tested isotherm models. Dubinin-Radushkevich’s monolayer maximum adsorption capacity qD (20.72 - 26.06 mg/g) is better than Langmuir’s qm (18.62 - 24.75 mg/g) for both adsorbents with the capacities higher for adsorption on watermelon rind than on neem leaves. Values of Langmuir separation factor (RL) suggest unfavourable adsorption processes (i.e. chemisorption) of the dye on both the adsorbents, while Freundlich constant (nF) indicates unfavourable process only for CR adsorption onto neem leaves. The Dubinin-Radushkevich’s mean free energy of adsorption, E (0.29 - 0.32 kJ/mol), suggests physical adsorption processes. Values for Temkin’s heat of adsorption, bT (-0.95 to 0.74 kJ/mol), also show physical adsorption process.
文摘In this study nanoporous NiO was prepared using Ni(CH3COO)2,4H2O, folic acid and water as starting material, template and solvent respectively, by sol gel method followed by calcination at 400℃. The solid product was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) Fourier transform infrared (FT-IR) and photoluminescence (PL) techniques. The particle size of the nanoparticles estimated by XRD was in good agreement with the particle size obtained by TEM analysis (4-5nm). It was also found that the prepared nanoporous NiO show very good activity for photodegredation of dye organic pollutants such as Congo red (91%) during 1.5 hours.
文摘The red ceramic pigment is widely used in industrial production, but the pigments with pure color and bright red performance are rare. Therefore, it is important to study and develop new red ceramic pigment with perfect color performance. This paper reports the preparation of Cr-doped YAlO_3 red ceramic pigment rendering by sol-gel method with high temperature resistance, good color and proposed color mechanism. The prepared samples were characterized by XRD, SEM, EDS and UV-vis, and the effects of Cr on the crystal structure, color rendering properties and color mechanism were discussed. The results showed that the optimum concentration of coloring agent(Cr) in Cr:YAlO_3 red ceramic pigment was 3 at.%. The main color mechanism was also discussed. Compared with the solid phase sintering and precipitation methods for the synthesis of red ceramic pigment, the sol-gel method possessed obvious advantages, such as perfect mixing of the raw materials, uniform dispersion of doping ions and the pure color.
基金Foundation item: Project supported by the National Natural Science Foundation of China (40472026).
文摘Based on the principle of synthesis, a new method was put forward to dispose Congo Red anion-containing dyestuff from wastewater and its feasibility was also examined. The principle of the method is described as follows: Mg2+ and Al3+ are hydrolyzed to form Mg/Al-LDH by adding Mg2+, Al3+ and NaOH in wastewater containing anion dyestuff, which is selectively intercalated with the interlayer of LDH in order to balance positive structural charge. While Mg2+ and Al3+ are co-precipitated to form LDH, the anion dyestuff in wastewater will be removed by LDH synthesized in-situ, as is confirmed by X-ray diffraction analysis of settlings and chemical analysis of aqueous samples. In this work, we studied the influence of Mg/Al mole ratio, pH value, time and temperature of reaction on the removal of anion dyestuff and the use of Mg and Al. The experimental results showed the maximum removal efficiency of anion dyestuff could be attained when pH value was 9.0, and Mg/Al mol ratio was 2∶1, reaction duration was 2 hours, and the effect of temperature was not remarkable, and the removal efficiency could reach 100%. Meanwhile, the Mg and Al added could be made good use of. This technology has the advantage of extraordinary efficiency of wastewater disposal.