期刊文献+
共找到4,424篇文章
< 1 2 222 >
每页显示 20 50 100
A New Two-Parameter Family of Nonlinear Conjugate Gradient Method Without Line Search for Unconstrained Optimization Problem
1
作者 ZHU Tiefeng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第5期403-411,共9页
This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on a... This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on any line search and only requires a simple step size formula to always generate a sufficient descent direction.Under certain assumptions,the proposed method is proved to possess global convergence.Finally,our method is compared with other potential methods.A large number of numerical experiments show that our method is more competitive and effective. 展开更多
关键词 unconstrained optimization conjugate gradient method without line search global convergence
原文传递
Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment
2
作者 Mohamed Zarouan Ibrahim M.Mehedi +1 位作者 Shaikh Abdul Latif Md.Masud Rana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1341-1364,共24页
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu... Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects. 展开更多
关键词 Fault detection Industry 4.0 gradient optimizer algorithm deep learning rotating machineries artificial intelligence
下载PDF
An Adaptive Spectral Conjugate Gradient Method with Restart Strategy
3
作者 Zhou Jincheng Jiang Meixuan +2 位作者 Zhong Zining Wu Yanqiang Shao Hu 《数学理论与应用》 2024年第3期106-118,共13页
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall... As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective. 展开更多
关键词 Unconstrained optimization Spectral conjugate gradient method Restart strategy Inexact line search Global convergence
下载PDF
Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data 被引量:9
4
作者 Wang Tai-Han Huang Da-Nian +2 位作者 Ma Guo-Qing Meng Zhao-Hai Li Ye 《Applied Geophysics》 SCIE CSCD 2017年第2期301-313,324,共14页
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin... With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data. 展开更多
关键词 Full Tensor Gravity Gradiometry (FTG) ICCG method conjugate gradient algorithm gravity-gradiometry data inversion CPU and GPU
下载PDF
A SUBSPACE PROJECTED CONJUGATE GRADIENT ALGORITHM FOR LARGE BOUND CONSTRAINED QUADRATIC PROGRAMMING 被引量:3
5
作者 倪勤 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1998年第1期51-60,共10页
A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active se... A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given. 展开更多
关键词 Projected search conjugate gradient method LARGE problem BOUND constrained quadraic programming.
下载PDF
Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization 被引量:4
6
作者 Ye Tian Haowen Chen +3 位作者 Haiping Ma Xingyi Zhang Kay Chen Tan Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1801-1817,共17页
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a... Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs. 展开更多
关键词 conjugate gradient differential evolution evolutionary computation large-scale multi-objective optimization mathematical programming
下载PDF
A Hybrid Conjugate Gradient Algorithm for Solving Relative Orientation of Big Rotation Angle Stereo Pair 被引量:3
7
作者 Jiatian LI Congcong WANG +5 位作者 Chenglin JIA Yiru NIU Yu WANG Wenjing ZHANG Huajing WU Jian LI 《Journal of Geodesy and Geoinformation Science》 2020年第2期62-70,共9页
The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochast... The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations. 展开更多
关键词 relative orientation big rotation angle global convergence stochastic hill climbing conjugate gradient algorithm
下载PDF
Super-resolution processing of passive millimeter-wave images based on conjugate-gradient algorithm 被引量:1
8
作者 Li Liangchao Yang Jianyu Cui Guolong Wu Junjie Jiang Zhengmao Zheng Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期762-767,共6页
This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved ... This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved by post data processing. A conjugate-gradient (CG) algorithm is adopted to circumvent this drawback. Simulation and real data collected in laboratory environment are given, and the results show that the CG algorithm improves the spatial resolution and convergent rate. Further, it can reduce the ringing effects which are caused by regularizing the image restoration. Thus, the CG algorithm is easily implemented for PMMW imaging. 展开更多
关键词 passive millimeter wave imaging SUPER-RESOLUTION conjugate-gradient spectral extrapolation.
下载PDF
The Irregular Weighted Wavelet Frame Conjugate Gradient Algorithm
9
作者 Jiang Li Yi Aichun +1 位作者 Zhang Changfan Zhu Shanhua 《China Communications》 SCIE CSCD 2007年第4期48-54,共7页
The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the ... The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on. 展开更多
关键词 NON-UNIFORM sampling FRAME algorithm IRREGULAR WAVELET FRAME conjugate gradient algorithm
下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems
10
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
下载PDF
GENERALIZED CONJUGATE-GRADIENT ALGORITHM AND ITS APPLICATIONS TO SEISMIC TRACE INVERSION
11
作者 Zhusheng, Zhou Jishan, He Heqing, Zhao 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期183-189,共7页
1INTRODUCTIONCurently,seismictraceinversionhasalreadybeenanimportantworkinseismicdataprocessingformeticulou... 1INTRODUCTIONCurently,seismictraceinversionhasalreadybeenanimportantworkinseismicdataprocessingformeticulousoilgasexplorati... 展开更多
关键词 SEISMIC TRACE INVERSION conjugate gradient algorithm accuracy stability operation speed
下载PDF
TRANSFORM DOMAIN CONJUGATE GRADIENT ALGORITHM FOR ADAPTIVE FILTERING
12
作者 S.C.Chan T.S.Ng 《Journal of Electronics(China)》 2000年第1期69-76,共8页
This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and ut... This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured. 展开更多
关键词 Adaptive filtering conjugate gradient algorithm ORTHOGONAL transform Channel EQUALIZATION ECHO CANCELLATION
下载PDF
New type of conjugate gradient algorithms for unconstrained optimization problems
13
作者 Caiying Wu Guoqing Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1000-1007,共8页
Two new formulaes of the main parameter βk of the conjugate gradient method are presented, which respectively can be seen as the modifications of method HS and PRP. In comparison with classic conjugate gradient metho... Two new formulaes of the main parameter βk of the conjugate gradient method are presented, which respectively can be seen as the modifications of method HS and PRP. In comparison with classic conjugate gradient methods, the new methods take both available gradient and function value information. Furthermore, their modifications are proposed. These methods are shown to be global convergent under some assumptions. Numerical results are also reported. 展开更多
关键词 conjugate gradient unconstrained optimization global convergence conjugacy condition.
下载PDF
Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs
14
作者 Lianghao Hua Jianfeng Zhang +1 位作者 Dejie Li Xiaobo Xi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2129-2157,共29页
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej... With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance. 展开更多
关键词 Radial basis function neural network plant protection unmanned aerial vehicle active disturbance rejection controller fractional gradient descent algorithm
下载PDF
An Implicit Smooth Conjugate Projection Gradient Algorithm for Optimization with Nonlinear Complementarity Constraints
15
作者 Cong Zhang Limin Sun +1 位作者 Zhibin Zhu Minglei Fang 《Applied Mathematics》 2015年第10期1712-1726,共15页
This paper discusses a special class of mathematical programs with equilibrium constraints. At first, by using a generalized complementarity function, the discussed problem is transformed into a family of general nonl... This paper discusses a special class of mathematical programs with equilibrium constraints. At first, by using a generalized complementarity function, the discussed problem is transformed into a family of general nonlinear optimization problems containing additional variable μ. Furthermore, combining the idea of penalty function, an auxiliary problem with inequality constraints is presented. And then, by providing explicit searching direction, we establish a new conjugate projection gradient method for optimization with nonlinear complementarity constraints. Under some suitable conditions, the proposed method is proved to possess global and superlinear convergence rate. 展开更多
关键词 Mathematical Programs with Equilibrium CONSTRAINTS conjugate PROJECTION gradient Global CONVERGENCE SUPERLINEAR CONVERGENCE
下载PDF
A Modified Three-Term Conjugate Gradient Algorithm for Large-Scale Nonsmooth Convex Optimization
16
作者 Wujie Hu Gonglin Yuan Hongtruong Pham 《Computers, Materials & Continua》 SCIE EI 2020年第2期787-800,共14页
It is well known that Newton and quasi-Newton algorithms are effective to small and medium scale smooth problems because they take full use of corresponding gradient function’s information but fail to solve nonsmooth... It is well known that Newton and quasi-Newton algorithms are effective to small and medium scale smooth problems because they take full use of corresponding gradient function’s information but fail to solve nonsmooth problems.The perfect algorithm stems from concept of‘bundle’successfully addresses both smooth and nonsmooth complex problems,but it is regrettable that it is merely effective to small and medium optimization models since it needs to store and update relevant information of parameter’s bundle.The conjugate gradient algorithm is effective both large-scale smooth and nonsmooth optimization model since its simplicity that utilizes objective function’s information and the technique of Moreau-Yosida regularization.Thus,a modified three-term conjugate gradient algorithm was proposed,and it has a sufficiently descent property and a trust region character.At the same time,it possesses the global convergence under mild assumptions and numerical test proves it is efficient than similar optimization algorithms. 展开更多
关键词 conjugate gradient LARGE-SCALE trust region global convergence
下载PDF
Three-dimensional conjugate gradient inversion of magnetotelluric sounding data 被引量:4
17
作者 林昌洪 谭捍东 佟拓 《Applied Geophysics》 SCIE CSCD 2008年第4期314-321,共8页
Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjug... Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjugate gradient inversion algorithm doesn' t need to compute and store the Jacobian matrix but directly updates the model from the computation of the Jacobian matrix. Requiring only one forward and four pseudo-forward modeling applications per frequency to produce the model update at each iteration, this algorithm efficiently reduces the computation of the inversion. From a trial inversion with synthetic magnetotelluric data, the validity and stability of the 3D conjugate gradient inversion algorithm is verified. 展开更多
关键词 MAGNETOTELLURIC 3D INVERSION conjugate gradient
下载PDF
Blind Deconvolution Method Based on Precondition Conjugate Gradients 被引量:1
18
作者 朱振宇 裴江云 +2 位作者 吕小林 刘洪 李幼铭 《Petroleum Science》 SCIE CAS CSCD 2004年第3期37-40,共4页
In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is als... In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased. 展开更多
关键词 Blind deconvolution precondition conjugate gradients (PCG) reflectivity series
下载PDF
Conjugate gradient and cross-correlation based least-square reverse time migration and its application 被引量:1
19
作者 孙小东 李振春 葛中慧 《Applied Geophysics》 SCIE CSCD 2017年第3期381-386,460,共7页
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain... Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized refleetivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality. 展开更多
关键词 Reverse time migration reflectivity Hessian matrix conjugate gradient
下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
20
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
下载PDF
上一页 1 2 222 下一页 到第
使用帮助 返回顶部