Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we...Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.展开更多
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-...By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.展开更多
Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs...Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.展开更多
Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials...Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.展开更多
A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis. The structures and properties of monomer and polymer were characterized and evaluated with IR, ^1H NM...A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis. The structures and properties of monomer and polymer were characterized and evaluated with IR, ^1H NMR, UV, TGA and GPC, respectively. Polymer with long side chain of alkoxy shows good solubility, thermal stability and photoisomerization property.展开更多
A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by abso...A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.展开更多
The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of th...The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni.展开更多
A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and el...A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and electrochemical measurement. The photoluminescent spectroscopy and cyclic voltammograms measurement demonstrated that the resulting polymer shows blue emission (477 nm) and possesses both electron and hole-transporting property.展开更多
Soft-stamped nanoimprint lithography(NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the pol...Soft-stamped nanoimprint lithography(NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the poly(9, 9-dioctylfluorene)film. By reducing the linewidth of the nanogratings on the stamp, the orientations of nanocrystals are confined along the grating vector in the nanoimprint process, where the confinement linewidth is comparable to the geometrical size of the nanocrystal. When the linewidth is about 400 nm, the poly(9, 9-dioctylfluorene)(PFO) nanocrystals could be orderly arranged in the nanogratings, so that both pattern transfer and well-aligned nanocrystal arrangement could be achieved in a single step by the soft-stamped NIL. The relevant mechanism of the nanocrystalline alignment in these nanogratings is fully discussed. The modulation of nanocrystal alignment is of benefit to the charge mobilities and other performances of PFO-based devices for the future applications.展开更多
According to the one-dimensional tight-binding Su-Schrieffer-Heeger model, we have investigated the effects of charged polarons on the static polarizability, axx, and the second order hyperpolarizabilities, γxxxx, of...According to the one-dimensional tight-binding Su-Schrieffer-Heeger model, we have investigated the effects of charged polarons on the static polarizability, axx, and the second order hyperpolarizabilities, γxxxx, of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on αxx and γxxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of αxx and γxxxx increase as the on-site Coulomb interaction U increases for U 〈 Uc and decrease with U for U 〉 Uc, where Uc is a critical value of U at which the static polarizability or the second order hypcrpolarizability reaches a maximal value of αxx or γxxxx. It is found that the effect of the e-e interaction on the value of αxx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γxxxx is sensitive both to the ratio of U to V and to the size of the molecule.展开更多
Two kinds of paclitaxel(PTX) conjugate micelles,of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)]...Two kinds of paclitaxel(PTX) conjugate micelles,of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)],were prepared for cell apoptosis and anti-tumor activity evaluation on U14 cervical cancer mouse models in comparison with 0.9%(mass fraction) saline(control) and equivalent Taxol.Seven days after tail intravenous injection of the drugs,the mice were sacrificed to measure the tumor masses.The average tumor masses were 4.26,2.89,2.63,and 2.17 g for the control,Taxol,M(PTX) and FA-M(PTX) groups,respectively.The inhibition rates of tumor growth calculated for the three drug groups were 32%,38% and 49%,respectively.Flow cytometry(FC) analysis and terminal deoxynucleotidyl transferase(TdT)-mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) assay were conducted on the cancer tissues.The cell apoptosis rates based on the FC data and the TUNEL data were 20%,31%,37%,42%,and 10%,22%,26%,34%,respectively,both showing statistically significant differences(P〈0.05) between three drug groups and the control group,and between the FA-M(PTX) group and the other two drug groups.In conclusion,the composite FA-M(PTX) micelles can be used for U14 cervical cancer treatment.展开更多
The title copolymer(PDEBO) was synthesized. The thermal characteristics of the polymer were determined by means of DSC and TGA, revealing that the polymer has a good thermal stability. The X-ray diffraction measuremen...The title copolymer(PDEBO) was synthesized. The thermal characteristics of the polymer were determined by means of DSC and TGA, revealing that the polymer has a good thermal stability. The X-ray diffraction measurements of the thin films showed that the polymer is disorder. Electroluminescence(EL) in the green region of the spectrum with a maximum at 500 nm was observed from the polymer films sandwiched between indium-tin-oxide and an Al electrode.展开更多
The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by N...The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by NMR, GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). ^1H-NMR investigation of the polymers indicates that the shish-kebab-structure has a strong ability to suppress the structural defects in the polymers. The polymers are enantiotropic liquid crystals. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. They showed not only a smectic LC phase, but also a strong green fluorescence in chloroform. The maximum absorption band of the "kebabs" of the two, 5-bis(4'- alkoxyphenyl)benzene at 280 nm did not appear in absorption spectra of the polymers. The same phenomena were also observed in the fluorescence spectra. These results imply that the polymers have formed a cross-conjugated uniform structure and achieved an extended n-conjugation polymer.展开更多
Suzuki coupling reaction is widely used in the construction of conjugated polymers; however, there is still no report describing the mechanism and coupling of 9,10-phenanthrenequinone(PQ) building blocks via Suzuki ...Suzuki coupling reaction is widely used in the construction of conjugated polymers; however, there is still no report describing the mechanism and coupling of 9,10-phenanthrenequinone(PQ) building blocks via Suzuki reaction because PQ is sensitive to bases and light. Herein is reported the efficient Suzuki coupling of PQ with 9,10-dialkylfluorene with Na2CO3 as basic species and high molecular weight PQ-Alt-Dialkyl-Fluorene conjugated copolymer obtained in an yield of 42%. Based on the characterization data and well-accepted literature, we proposed a step-by-step mechanistic explanation for the formation of the PQ containing alternating conjugated copolymer.展开更多
We have studied the electric-field-driven motion of a polaron by solving the time-dependent SchrSdinger equation nonadiabatically and the lattice equation of motion simultaneously. It is found that the polaron may exp...We have studied the electric-field-driven motion of a polaron by solving the time-dependent SchrSdinger equation nonadiabatically and the lattice equation of motion simultaneously. It is found that the polaron may experience two sequent transitions under high fields; one is the transition from the subsonic to the supersonic state, and the other from the supersonic to dissociated state. The acoustic mode is decoupled from the charge when the polaron moves at a speed faster than the sound speed, and then the optical mode is decoupled at the second transition to make the polaron dissociate completely.展开更多
A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)(2)(C=CC(CH3)(2)OH)(2)(PPB). Thin film ...A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)(2)(C=CC(CH3)(2)OH)(2)(PPB). Thin film resistive humidity sensor based oil the copolymer doped with HClO4 was prepared. The impedance of the sensor changed from 10(3)similar to 10(7) Omega in 95%similar to 30%RH, and the response of that is very quick (<6 sec.). Preliminary results show the copolymer is a promising humidity sensitive material.展开更多
Chiral polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3'-diiodo-2,2'-bisbutoxy-1,1'- binaphthyl (M- 1 ) with 2,5-di(4-ethynylphenyl)- 1,3,4-oxadiazole (M-3) and (R)-3,3'-diethylnyl-...Chiral polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3'-diiodo-2,2'-bisbutoxy-1,1'- binaphthyl (M- 1 ) with 2,5-di(4-ethynylphenyl)- 1,3,4-oxadiazole (M-3) and (R)-3,3'-diethylnyl-2,2'-bisbutoxy- 1,1 '-binaphthyl (M-2) with 1,2-di(4-bromophenyl)acetylene (M-4) under Sonogashira reaction, respectively. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-Vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and CD spectroscopy. CD spectra of P-1 and P-2 are similar due to the same chiral center units and main chain structure. The long wavelengths CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure and a highly rigid backbone in the polymer chain. Polymers have strong blue fluorescence due to the efficient energy migration from the extended n-electronic structure of the polymers to the chiral binaphthyl core and are expected to provide understanding of the relationship between molecular structure and fluorescent property of the chiral polymers.展开更多
A new type of chiral conjugated polymers 6a-d has been synthesized by the reaction of (R)-2,2'-dihydroxy-1,1'-binaphthyl-6,6'-dicarbaldehyde 5 with corresponding diamine in the presence of acetic acid.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2C2004109)the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0020612,2022 The Competency Development Program for Industry Specialist).
文摘Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020MA070).
文摘By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.
文摘Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.
基金Financial support from National Natural Science Foundation of China(Nos.51702056 and 51772135)the Ministry of Education of China(6141A02022516)China Postdoctoral Science Foundation(2017M622902 and 2019T120790).
文摘Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.
基金supported by the National Natural Science Foundation of China(No.20573049).
文摘A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis. The structures and properties of monomer and polymer were characterized and evaluated with IR, ^1H NMR, UV, TGA and GPC, respectively. Polymer with long side chain of alkoxy shows good solubility, thermal stability and photoisomerization property.
文摘A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.
文摘The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni.
基金This work was supported by the National Natural Science Foundation of China (No. 29725410 and 29992530) and Chinese Academy of Sciences (KJ951-A1-501-01).
文摘A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and electrochemical measurement. The photoluminescent spectroscopy and cyclic voltammograms measurement demonstrated that the resulting polymer shows blue emission (477 nm) and possesses both electron and hole-transporting property.
基金Project supported by the National Natural Science Foundation of China(Grant No.21204058)
文摘Soft-stamped nanoimprint lithography(NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the poly(9, 9-dioctylfluorene)film. By reducing the linewidth of the nanogratings on the stamp, the orientations of nanocrystals are confined along the grating vector in the nanoimprint process, where the confinement linewidth is comparable to the geometrical size of the nanocrystal. When the linewidth is about 400 nm, the poly(9, 9-dioctylfluorene)(PFO) nanocrystals could be orderly arranged in the nanogratings, so that both pattern transfer and well-aligned nanocrystal arrangement could be achieved in a single step by the soft-stamped NIL. The relevant mechanism of the nanocrystalline alignment in these nanogratings is fully discussed. The modulation of nanocrystal alignment is of benefit to the charge mobilities and other performances of PFO-based devices for the future applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574037)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-05-0262)+3 种基金the Hebei Provincial Outstanding Youth Science Fund(Grant No.A2009001512)the Key Project of Ministry of Education of China(Grant No.210021)the Natural Science Fund of Hebei Province,China(Grant No.A2010000357)the Educational Commission of Hebei Province, China(Grant No.2007124)
文摘According to the one-dimensional tight-binding Su-Schrieffer-Heeger model, we have investigated the effects of charged polarons on the static polarizability, axx, and the second order hyperpolarizabilities, γxxxx, of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on αxx and γxxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of αxx and γxxxx increase as the on-site Coulomb interaction U increases for U 〈 Uc and decrease with U for U 〉 Uc, where Uc is a critical value of U at which the static polarizability or the second order hypcrpolarizability reaches a maximal value of αxx or γxxxx. It is found that the effect of the e-e interaction on the value of αxx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γxxxx is sensitive both to the ratio of U to V and to the size of the molecule.
基金Supported by the National Natural Science Foundation of China(Nos.20674084,21004062,51103148)the National Basic Research Program of China(No.2009CB930102)the National High-Tech Research and Development Program of China(No.2007AA03Z535)
文摘Two kinds of paclitaxel(PTX) conjugate micelles,of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)],were prepared for cell apoptosis and anti-tumor activity evaluation on U14 cervical cancer mouse models in comparison with 0.9%(mass fraction) saline(control) and equivalent Taxol.Seven days after tail intravenous injection of the drugs,the mice were sacrificed to measure the tumor masses.The average tumor masses were 4.26,2.89,2.63,and 2.17 g for the control,Taxol,M(PTX) and FA-M(PTX) groups,respectively.The inhibition rates of tumor growth calculated for the three drug groups were 32%,38% and 49%,respectively.Flow cytometry(FC) analysis and terminal deoxynucleotidyl transferase(TdT)-mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) assay were conducted on the cancer tissues.The cell apoptosis rates based on the FC data and the TUNEL data were 20%,31%,37%,42%,and 10%,22%,26%,34%,respectively,both showing statistically significant differences(P〈0.05) between three drug groups and the control group,and between the FA-M(PTX) group and the other two drug groups.In conclusion,the composite FA-M(PTX) micelles can be used for U14 cervical cancer treatment.
基金Supported by the National Natural Science Foundation of China(No.2 99740 2 5 ) and Zhejiang Provincial Nature Science Foundation(No.5 9910 0 ) State Key L aboratory of Silicon MaterialsL aboratory of Organnic Solids,Institute of Chemistry,Chinese Acade
文摘The title copolymer(PDEBO) was synthesized. The thermal characteristics of the polymer were determined by means of DSC and TGA, revealing that the polymer has a good thermal stability. The X-ray diffraction measurements of the thin films showed that the polymer is disorder. Electroluminescence(EL) in the green region of the spectrum with a maximum at 500 nm was observed from the polymer films sandwiched between indium-tin-oxide and an Al electrode.
基金This work was supported by the National Natural Science Foundation of China (No. 20574064).
文摘The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by NMR, GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). ^1H-NMR investigation of the polymers indicates that the shish-kebab-structure has a strong ability to suppress the structural defects in the polymers. The polymers are enantiotropic liquid crystals. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. They showed not only a smectic LC phase, but also a strong green fluorescence in chloroform. The maximum absorption band of the "kebabs" of the two, 5-bis(4'- alkoxyphenyl)benzene at 280 nm did not appear in absorption spectra of the polymers. The same phenomena were also observed in the fluorescence spectra. These results imply that the polymers have formed a cross-conjugated uniform structure and achieved an extended n-conjugation polymer.
基金the National Natural Science Foundation of China(Nos.20573040, 20474024, 20125421, 90101026 and 50303007)National Basic Research Program of China(Nos.2002CB6134003 and 2003CB314703) and PCSIRT
文摘Suzuki coupling reaction is widely used in the construction of conjugated polymers; however, there is still no report describing the mechanism and coupling of 9,10-phenanthrenequinone(PQ) building blocks via Suzuki reaction because PQ is sensitive to bases and light. Herein is reported the efficient Suzuki coupling of PQ with 9,10-dialkylfluorene with Na2CO3 as basic species and high molecular weight PQ-Alt-Dialkyl-Fluorene conjugated copolymer obtained in an yield of 42%. Based on the characterization data and well-accepted literature, we proposed a step-by-step mechanistic explanation for the formation of the PQ containing alternating conjugated copolymer.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos 10474056, 90403110 and 10574082).
文摘We have studied the electric-field-driven motion of a polaron by solving the time-dependent SchrSdinger equation nonadiabatically and the lattice equation of motion simultaneously. It is found that the polaron may experience two sequent transitions under high fields; one is the transition from the subsonic to the supersonic state, and the other from the supersonic to dissociated state. The acoustic mode is decoupled from the charge when the polaron moves at a speed faster than the sound speed, and then the optical mode is decoupled at the second transition to make the polaron dissociate completely.
文摘A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)(2)(C=CC(CH3)(2)OH)(2)(PPB). Thin film resistive humidity sensor based oil the copolymer doped with HClO4 was prepared. The impedance of the sensor changed from 10(3)similar to 10(7) Omega in 95%similar to 30%RH, and the response of that is very quick (<6 sec.). Preliminary results show the copolymer is a promising humidity sensitive material.
基金This work was supported by the National Natural Science Foundation of China (No. 20474028)Jiangsu Provincial Natural Science Foundation (No. BK2004086)
文摘Chiral polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3'-diiodo-2,2'-bisbutoxy-1,1'- binaphthyl (M- 1 ) with 2,5-di(4-ethynylphenyl)- 1,3,4-oxadiazole (M-3) and (R)-3,3'-diethylnyl-2,2'-bisbutoxy- 1,1 '-binaphthyl (M-2) with 1,2-di(4-bromophenyl)acetylene (M-4) under Sonogashira reaction, respectively. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-Vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and CD spectroscopy. CD spectra of P-1 and P-2 are similar due to the same chiral center units and main chain structure. The long wavelengths CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure and a highly rigid backbone in the polymer chain. Polymers have strong blue fluorescence due to the efficient energy migration from the extended n-electronic structure of the polymers to the chiral binaphthyl core and are expected to provide understanding of the relationship between molecular structure and fluorescent property of the chiral polymers.
文摘A new type of chiral conjugated polymers 6a-d has been synthesized by the reaction of (R)-2,2'-dihydroxy-1,1'-binaphthyl-6,6'-dicarbaldehyde 5 with corresponding diamine in the presence of acetic acid.