Cysteine(Cys)-specific bioconjugation has widespread applications in the synthesis of protein conjugates,particularly for the functionalization of antibodies.Here,we report the discovery of transstyryl sulfonyl fluori...Cysteine(Cys)-specific bioconjugation has widespread applications in the synthesis of protein conjugates,particularly for the functionalization of antibodies.Here,we report the discovery of transstyryl sulfonyl fluoride(SSF)as a near-perfect Michael acceptor for Cys-specific protein bioconjugation.Compared to maleimides,which are predominantly used,SSF exhibited better chemoselectivity,selfstability,and conjugate stability while maintaining comparable reactivity.Using SSF-derived probes,proteins can be readily modified on the Cys residue(s)to install functionalities,for example,fluorescent dyes,toxins,and oligonucleotides,without influencing the activity.Further applications of SSF-derived serum-stable antibody-drug conjugates and PD-L1 nanobody-oligo conjugates demonstrate the great translational value of SSF-based bioconjugation in drug development and single-cell sequencing.展开更多
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we...Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.展开更多
The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resista...The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant(XDR)Gram-negative pathogens.Antibiotic adjuvants are a promising strategy to enhance the efficacy of colistin against colistin-resistant pathogens;however,few studies have considered the effects of adjuvants on limiting resistance-gene transmission.We found that chelerythrine(4 mg·L^(-1))derived from Macleaya cordata extract,which is used as an animal feed additive,reduced the minimal inhibitory concentration(MIC)of colistin against an mcr-1 positive Escherichia coli(E.coli)strain by 16-fold(from 2.000 to 0.125 mg·L^(-1)).eliminated approximately 10^(4) colony-forming units(CFUs)of an mcr-1-carrying strain in a murine intestinal infection model,and inhibited the conjugation of an mcr-1-bearing plasmid in vitro(by>100-fold)and in a mouse model(by up to 5-fold).A detailed analysis revealed that chelery-thrine binds to phospholipids on bacterial membranes and increases cytoplasmic membrane fluidity,thereby impairing respiration,disrupting proton motive force(PMF),generating reactive oxygen species(ROS),and decreasing intracellular adenosine triphosphate(ATP)levels,which subsequently downregu-lates mcr-1 and conjugation-associated genes.These dual effects of chelerythrine can expand the use of antibiotic adjuvants and may provide a new strategy for circumventing mobile colistin resistance.展开更多
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs...Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.展开更多
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha...Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.展开更多
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h...By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.展开更多
By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-...By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.展开更多
The b-1-6-linked poly-N-acetylglucosamine(PNAG)polymer is a conserved surface polysaccharide produced by many bacteria,fungi,and protozoan(and even filarial)parasites.This wide-ranging expression makes PNAG an attract...The b-1-6-linked poly-N-acetylglucosamine(PNAG)polymer is a conserved surface polysaccharide produced by many bacteria,fungi,and protozoan(and even filarial)parasites.This wide-ranging expression makes PNAG an attractive target for vaccine development,as it potentially encompasses a broad range of microorganisms.Significant progress has been made in discovering important properties of the biology of PNAG expression in recent years.The molecular characterization and regulation of operons for the production of PNAG biosynthetic proteins and enzymes have been studied in many bacteria.In addition,the physiological function of PNAG has been further elucidated.PNAG-based vaccines and PNAG-targeting antibodies have shown great efficacy in preclinical research.Furthermore,clinical tests for both vaccines and antibodies have been carried out in humans and economically important animals,and the results are promising.Although it is not destined to be a smooth road,we are optimistic about new vaccines and immunotherapeutics targeting PNAG becoming validated and eventually licensed for clinical use against multiple infectious agents.展开更多
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attrac...Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.展开更多
Melittin,a classical antimicrobial peptide,is a highly potent antitumor agent.However,its significant toxicity seriously hampers its application in tumor therapy.In this study,we developed novel melittin analogs with ...Melittin,a classical antimicrobial peptide,is a highly potent antitumor agent.However,its significant toxicity seriously hampers its application in tumor therapy.In this study,we developed novel melittin analogs with pH-responsive,cell-penetrating and membranelytic activities by replacing arginine and lysine with histidine.After conjugation with camptothecin(CPT),CPT-AAM-1 and CPT-AAM-2 were capable of killing tumor cells by releasing CPT at low concentrations and disrupting cell membranes at high concentrations under acidic conditions.Notably,we found that the C-terminus of the melittin analogs was more suitable for drug conjugation than the N-terminus.CPT-AAM-1 significantly suppressed melanoma growth in vivo with relatively low toxicity.Collectively,the present study demonstrates that the development of antitumor drugs based on pH-responsive antimicrobial peptide-drug conjugates is a promising strategy.展开更多
The low-cost and easy large-scale fabrication advantages of printable mesoscopic perovskite solar cells(p-MPSCs)are overshadowed by their limited photovoltaic conversion efficiency(PCE).Here,we introduce the hydrazide...The low-cost and easy large-scale fabrication advantages of printable mesoscopic perovskite solar cells(p-MPSCs)are overshadowed by their limited photovoltaic conversion efficiency(PCE).Here,we introduce the hydrazide derivative of 4-Hydroxybenzoylhydrazine(4-HBH)to improve the PCE of p-MPSCs by inducing enhanced defect passivation.Both carbonyl and hydrazine groups in hydrazide groups present strong interaction with perovskite.The hydroxyl group,as an electron donor group,increases the electron cloud density of the hydrazide group in 4-HBH under the conjugation of the benzene ring,and thus enhances its interaction with perovskite.Additionally,the hydroxy group itself interacts with perovskite and passivates defects synergistically.The hydrazine agents can also reduce I2and suppress the loss of iodine in perovskite films,which inhibits the formation of iodine-related defects.Consequently,p-MPSCs with 4-HBH achieve a high PCE of 19.21%,and present well improved stability.展开更多
The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synth...The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synthetic aperture radar(InSAR)and seismic data to study the mainshock rupture,early afterslip and the second largest aftershock of the 2022 Menyuan earthquake sequences.Our modeling results show that the mainshock ruptured the Lenglongling fault and the Tuolaishan fault with a maximum slip of~3 m.Rapid postseismic transient deformation occurred at the center of the Lenglongling fault.Our afterslip modeling reveals that the majority of afterslip occurred in the deeper part of the Lenglongling fault.A high-angle conjugated faulting event is found at the middle section of the Lenglongling fault.We use the stress inversion to investigate the possible triggering mechanism of the conjugated rupture event.The results indicate the maximum principal stress direction is in~222°,forming a~22°angle between the conjugated fault of second largest aftershock and the mainshock.The calculated normal stress changes indicate the region is within a pull-apart stress field,which favors such a conjugated rupturing event.Our study will help understand the rupture behavior of such kind of conjugated fault in other regions.展开更多
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall...As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.展开更多
Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost prob...Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.展开更多
Background:WHO currently recommends a single dose of typhoid conjugate vaccine(TCV)in high-burden countries based on 2-year vaccine efficacy data from large randomised controlled trials.Given the decay of immunogenici...Background:WHO currently recommends a single dose of typhoid conjugate vaccine(TCV)in high-burden countries based on 2-year vaccine efficacy data from large randomised controlled trials.Given the decay of immunogenicity,the protection beyond 2 years is unknown.We therefore extended the follow-up of the TyVAC trial in Bangladesh to assess waning of vaccine protection to 5 years after vaccination.展开更多
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun...Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.展开更多
Novel small sulfur heterocyclic quinones(6a,16adihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone(4S6Q)and benzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-t...Novel small sulfur heterocyclic quinones(6a,16adihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone(4S6Q)and benzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-tetraone(4S4Q))are developed by molecule structural design method and as cathode for aqueous zincorganic batteries.The conjugated thioether(–S–)bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extendedπ-conjugated plane and constructed flexible molecular skeleton.Hence,the Zn//4S6Q and Zn//4S4Q batteries exhibit satisfactory electrochemical performance based on 3.5 mol L-1(M)Zn(ClO4)2electrolyte.For instance,the Zn//4S6Q battery obtains 240 and 208.6 mAh g^(-1)of discharge capacity at 150 mA g^(-1)and 30 A g^(-1),respectively.The excellent rate capability is ascribed to the fast reaction kinetics.This system displays a superlong life of 20,000 cycles with no capacity fading at 3 A g^(-1).Additionally,the H+-storage mechanism of the 4S6Q compound is demonstrated by ex situ analyses and density functional theory calculations.Impressively,the battery can normally work at-60℃benefiting from the anti-freezing electrolyte and maintain a high discharge capacity of 201.7 mAh g^(-1),which is 86.2%of discharge capacity at 25℃.The cutting-edge electrochemical performances of these novel compounds make them alternative electrode materials for Zn-organic batteries.展开更多
Triple-negative breast cancer(TNBC)is a disease with often an aggressive course and a poor prognosis compared to other subtypes of breast cancer.TNBC accounts for approximately 10%–15%of all diagnosed breast cancer c...Triple-negative breast cancer(TNBC)is a disease with often an aggressive course and a poor prognosis compared to other subtypes of breast cancer.TNBC accounts for approximately 10%–15%of all diagnosed breast cancer cases and represents a high unmet need in the field.Up to just a few years ago,chemotherapy was the only systemic treatment option for this subtype(1).To date,TNBC is considered a heterogeneous disease.One of the existing classifications is based on the analysis of mRNA expression in 587 TNBC cases,in which Lehman et al.proposed six subtypes of TNBC as follows:two basal-like(BL1 and BL2)subtypes,a mesenchymal(M)subtype,a mesenchymal stem-like(MSL)subtype,an immunomodulatory(IM)subtype,and a luminal androgen receptor(LAR)subtype(2).Later studies have demonstrated that the IM and MSL subtypes do not correlate with independent subtypes but reflect background expression by dense infiltration of tumor-infiltrating lymphocytes(TILs)or stromal cells.According to this finding,the classification of TNBC has been revised into the following four subtypes:basal 1,basal 2,LAR,and mesenchymal subtypes(3).Over the last years,several new strategies have been investigated for the treatment of patients with TNBC.Among them,immunotherapy,antibody drug conjugates,new chemotherapy agents,and targeted therapy have been and are currently being developed.The present article aims to provide an updated overview on the different treatment options that are now available or are still under investigation for patients with TNBC.展开更多
基金Financial support from the National Key R&D Program of China(grant no.2019YFA09006600)the National Natural Science Foundation of China(grant nos.21977048 and 92053111)+2 种基金the Natural Science Foundation of Jiangsu Province(grant no.BK20202004)the Beijing National Laboratory for Molecular Sciences(grant no.BNLMS20200)the Jiangsu Specially-Appointed Professor Plan,and the Program for Innovative Talents and Entrepreneur in Jiangsu is gratefully acknowledged.Q.Z.is the Connie and Bob Lurie Fellow of the Damon Runyon Cancer Research Foundation(DRG-2434-21).
文摘Cysteine(Cys)-specific bioconjugation has widespread applications in the synthesis of protein conjugates,particularly for the functionalization of antibodies.Here,we report the discovery of transstyryl sulfonyl fluoride(SSF)as a near-perfect Michael acceptor for Cys-specific protein bioconjugation.Compared to maleimides,which are predominantly used,SSF exhibited better chemoselectivity,selfstability,and conjugate stability while maintaining comparable reactivity.Using SSF-derived probes,proteins can be readily modified on the Cys residue(s)to install functionalities,for example,fluorescent dyes,toxins,and oligonucleotides,without influencing the activity.Further applications of SSF-derived serum-stable antibody-drug conjugates and PD-L1 nanobody-oligo conjugates demonstrate the great translational value of SSF-based bioconjugation in drug development and single-cell sequencing.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2C2004109)the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0020612,2022 The Competency Development Program for Industry Specialist).
文摘Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
基金grants from the Laboratory of Lingnan Modern Agriculture Project(NT2021006 to Yang Wang and Jianzhong Shen)the National Natural Science Foundation of China(81861138051 and 81991535 to Yang Wang and Congming Wu).
文摘The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant(XDR)Gram-negative pathogens.Antibiotic adjuvants are a promising strategy to enhance the efficacy of colistin against colistin-resistant pathogens;however,few studies have considered the effects of adjuvants on limiting resistance-gene transmission.We found that chelerythrine(4 mg·L^(-1))derived from Macleaya cordata extract,which is used as an animal feed additive,reduced the minimal inhibitory concentration(MIC)of colistin against an mcr-1 positive Escherichia coli(E.coli)strain by 16-fold(from 2.000 to 0.125 mg·L^(-1)).eliminated approximately 10^(4) colony-forming units(CFUs)of an mcr-1-carrying strain in a murine intestinal infection model,and inhibited the conjugation of an mcr-1-bearing plasmid in vitro(by>100-fold)and in a mouse model(by up to 5-fold).A detailed analysis revealed that chelery-thrine binds to phospholipids on bacterial membranes and increases cytoplasmic membrane fluidity,thereby impairing respiration,disrupting proton motive force(PMF),generating reactive oxygen species(ROS),and decreasing intracellular adenosine triphosphate(ATP)levels,which subsequently downregu-lates mcr-1 and conjugation-associated genes.These dual effects of chelerythrine can expand the use of antibiotic adjuvants and may provide a new strategy for circumventing mobile colistin resistance.
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
文摘Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.
基金supported by the National Natural Science Foundation of China(Grant Nos.21975127,22105102,and 22135003)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20210074)the Fundamental Research Funds for the Central Universities(Grant No.30921011204)。
文摘Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.
基金Funded by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan Univesity of Technology。
文摘By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020MA070).
文摘By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.
基金supported by the National Natural Science Foundation of China(32141003 and 81703399)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(CIFMS,2021-I2M-1-026).
文摘The b-1-6-linked poly-N-acetylglucosamine(PNAG)polymer is a conserved surface polysaccharide produced by many bacteria,fungi,and protozoan(and even filarial)parasites.This wide-ranging expression makes PNAG an attractive target for vaccine development,as it potentially encompasses a broad range of microorganisms.Significant progress has been made in discovering important properties of the biology of PNAG expression in recent years.The molecular characterization and regulation of operons for the production of PNAG biosynthetic proteins and enzymes have been studied in many bacteria.In addition,the physiological function of PNAG has been further elucidated.PNAG-based vaccines and PNAG-targeting antibodies have shown great efficacy in preclinical research.Furthermore,clinical tests for both vaccines and antibodies have been carried out in humans and economically important animals,and the results are promising.Although it is not destined to be a smooth road,we are optimistic about new vaccines and immunotherapeutics targeting PNAG becoming validated and eventually licensed for clinical use against multiple infectious agents.
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
基金the National Natural Science Foundation of China(Grant No.:51803120).
文摘Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.
基金supported by the grants from the National Natural Science Foundation of China(Nos.81773566 and 21602092)Innovation Project of Medicine and Health Science and Technology of Chinese Academy of Medical Sciences(2019-I2M-5-074)+1 种基金the Funds for Fundamental Research Creative Groups of Gansu Province(No.20JR5RA310)the Fundamental Research Funds for the Central Universities(No.lzujbky-2021-38).
文摘Melittin,a classical antimicrobial peptide,is a highly potent antitumor agent.However,its significant toxicity seriously hampers its application in tumor therapy.In this study,we developed novel melittin analogs with pH-responsive,cell-penetrating and membranelytic activities by replacing arginine and lysine with histidine.After conjugation with camptothecin(CPT),CPT-AAM-1 and CPT-AAM-2 were capable of killing tumor cells by releasing CPT at low concentrations and disrupting cell membranes at high concentrations under acidic conditions.Notably,we found that the C-terminus of the melittin analogs was more suitable for drug conjugation than the N-terminus.CPT-AAM-1 significantly suppressed melanoma growth in vivo with relatively low toxicity.Collectively,the present study demonstrates that the development of antitumor drugs based on pH-responsive antimicrobial peptide-drug conjugates is a promising strategy.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52172198,51902117,91733301)。
文摘The low-cost and easy large-scale fabrication advantages of printable mesoscopic perovskite solar cells(p-MPSCs)are overshadowed by their limited photovoltaic conversion efficiency(PCE).Here,we introduce the hydrazide derivative of 4-Hydroxybenzoylhydrazine(4-HBH)to improve the PCE of p-MPSCs by inducing enhanced defect passivation.Both carbonyl and hydrazine groups in hydrazide groups present strong interaction with perovskite.The hydroxyl group,as an electron donor group,increases the electron cloud density of the hydrazide group in 4-HBH under the conjugation of the benzene ring,and thus enhances its interaction with perovskite.Additionally,the hydroxy group itself interacts with perovskite and passivates defects synergistically.The hydrazine agents can also reduce I2and suppress the loss of iodine in perovskite films,which inhibits the formation of iodine-related defects.Consequently,p-MPSCs with 4-HBH achieve a high PCE of 19.21%,and present well improved stability.
基金the National Science Fund for Distinguished Young Scholars(No.41925016)National Key Research and Development Program(No.2022YFB3903602)+1 种基金National Natural Science Foundation of China(No.42174023)the Frontier Cross Research Project of Central South University(No.2023QYJC006).
文摘The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synthetic aperture radar(InSAR)and seismic data to study the mainshock rupture,early afterslip and the second largest aftershock of the 2022 Menyuan earthquake sequences.Our modeling results show that the mainshock ruptured the Lenglongling fault and the Tuolaishan fault with a maximum slip of~3 m.Rapid postseismic transient deformation occurred at the center of the Lenglongling fault.Our afterslip modeling reveals that the majority of afterslip occurred in the deeper part of the Lenglongling fault.A high-angle conjugated faulting event is found at the middle section of the Lenglongling fault.We use the stress inversion to investigate the possible triggering mechanism of the conjugated rupture event.The results indicate the maximum principal stress direction is in~222°,forming a~22°angle between the conjugated fault of second largest aftershock and the mainshock.The calculated normal stress changes indicate the region is within a pull-apart stress field,which favors such a conjugated rupturing event.Our study will help understand the rupture behavior of such kind of conjugated fault in other regions.
基金supported by the National Natural Science Foundation of China (No.72071202)the Key Laboratory of Mathematics and Engineering ApplicationsMinistry of Education。
文摘As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.
文摘Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.
文摘Background:WHO currently recommends a single dose of typhoid conjugate vaccine(TCV)in high-burden countries based on 2-year vaccine efficacy data from large randomised controlled trials.Given the decay of immunogenicity,the protection beyond 2 years is unknown.We therefore extended the follow-up of the TyVAC trial in Bangladesh to assess waning of vaccine protection to 5 years after vaccination.
文摘Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.
基金the National Natural Science Foundation of China(22279063 and 21835004)the National Key R&D Program of China(2016YFB0901500)+1 种基金Ministry of Education of China(B12015 and IRT13R30)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Novel small sulfur heterocyclic quinones(6a,16adihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone(4S6Q)and benzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-tetraone(4S4Q))are developed by molecule structural design method and as cathode for aqueous zincorganic batteries.The conjugated thioether(–S–)bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extendedπ-conjugated plane and constructed flexible molecular skeleton.Hence,the Zn//4S6Q and Zn//4S4Q batteries exhibit satisfactory electrochemical performance based on 3.5 mol L-1(M)Zn(ClO4)2electrolyte.For instance,the Zn//4S6Q battery obtains 240 and 208.6 mAh g^(-1)of discharge capacity at 150 mA g^(-1)and 30 A g^(-1),respectively.The excellent rate capability is ascribed to the fast reaction kinetics.This system displays a superlong life of 20,000 cycles with no capacity fading at 3 A g^(-1).Additionally,the H+-storage mechanism of the 4S6Q compound is demonstrated by ex situ analyses and density functional theory calculations.Impressively,the battery can normally work at-60℃benefiting from the anti-freezing electrolyte and maintain a high discharge capacity of 201.7 mAh g^(-1),which is 86.2%of discharge capacity at 25℃.The cutting-edge electrochemical performances of these novel compounds make them alternative electrode materials for Zn-organic batteries.
文摘Triple-negative breast cancer(TNBC)is a disease with often an aggressive course and a poor prognosis compared to other subtypes of breast cancer.TNBC accounts for approximately 10%–15%of all diagnosed breast cancer cases and represents a high unmet need in the field.Up to just a few years ago,chemotherapy was the only systemic treatment option for this subtype(1).To date,TNBC is considered a heterogeneous disease.One of the existing classifications is based on the analysis of mRNA expression in 587 TNBC cases,in which Lehman et al.proposed six subtypes of TNBC as follows:two basal-like(BL1 and BL2)subtypes,a mesenchymal(M)subtype,a mesenchymal stem-like(MSL)subtype,an immunomodulatory(IM)subtype,and a luminal androgen receptor(LAR)subtype(2).Later studies have demonstrated that the IM and MSL subtypes do not correlate with independent subtypes but reflect background expression by dense infiltration of tumor-infiltrating lymphocytes(TILs)or stromal cells.According to this finding,the classification of TNBC has been revised into the following four subtypes:basal 1,basal 2,LAR,and mesenchymal subtypes(3).Over the last years,several new strategies have been investigated for the treatment of patients with TNBC.Among them,immunotherapy,antibody drug conjugates,new chemotherapy agents,and targeted therapy have been and are currently being developed.The present article aims to provide an updated overview on the different treatment options that are now available or are still under investigation for patients with TNBC.