Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
The image intensity inversion operation was succeeded by using the new type KNSBN.Cu crystal self-pumped phase-conjugate mirror.The new phase-conjugator was demonstrated to have the reguired specifications for this op...The image intensity inversion operation was succeeded by using the new type KNSBN.Cu crystal self-pumped phase-conjugate mirror.The new phase-conjugator was demonstrated to have the reguired specifications for this optical processing application.展开更多
2024年5月举行的欧洲肿瘤内科学会乳腺癌年会(European Society for Medical Oncology Breast Cance,ESMO BC)在德国柏林召开。本次年会展示了一系列针对乳腺癌治疗的最新进展,包括创新疗法和诊治策略。特别值得关注的是,细胞周期蛋白...2024年5月举行的欧洲肿瘤内科学会乳腺癌年会(European Society for Medical Oncology Breast Cance,ESMO BC)在德国柏林召开。本次年会展示了一系列针对乳腺癌治疗的最新进展,包括创新疗法和诊治策略。特别值得关注的是,细胞周期蛋白依赖性激酶4和6(cyclin-dependent kinases 4 and 6,CDK4/6)抑制剂联合内分泌治疗(endocrine therapy,ET)在早期乳腺癌新辅助治疗中的研究尚未达到主要终点,而探索性分析结果表明,该领域仍有待进一步研究。CDK4/6抑制剂联合ET继续作为高危患者辅助治疗的标准。同时,阿贝西利在携带BRCA1/2突变的患者亚组中显示出初步的一致性获益。瑞波西利虽然不良反应可控,但仍需进行密切监测。新型CDK4选择性抑制剂、AKT抑制剂、抗体药物偶联物(antibody-drug conjugates,ADC)以及免疫治疗为晚期乳腺癌患者提供了新的治疗选项。本次年会所展现的研究成果,不仅代表了乳腺癌治疗领域的进步,也为未来的研究方向和患者治疗策略提供了新的视野。本文就此次年会上重点的研究进展进行综述。展开更多
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
文摘The image intensity inversion operation was succeeded by using the new type KNSBN.Cu crystal self-pumped phase-conjugate mirror.The new phase-conjugator was demonstrated to have the reguired specifications for this optical processing application.
文摘2024年5月举行的欧洲肿瘤内科学会乳腺癌年会(European Society for Medical Oncology Breast Cance,ESMO BC)在德国柏林召开。本次年会展示了一系列针对乳腺癌治疗的最新进展,包括创新疗法和诊治策略。特别值得关注的是,细胞周期蛋白依赖性激酶4和6(cyclin-dependent kinases 4 and 6,CDK4/6)抑制剂联合内分泌治疗(endocrine therapy,ET)在早期乳腺癌新辅助治疗中的研究尚未达到主要终点,而探索性分析结果表明,该领域仍有待进一步研究。CDK4/6抑制剂联合ET继续作为高危患者辅助治疗的标准。同时,阿贝西利在携带BRCA1/2突变的患者亚组中显示出初步的一致性获益。瑞波西利虽然不良反应可控,但仍需进行密切监测。新型CDK4选择性抑制剂、AKT抑制剂、抗体药物偶联物(antibody-drug conjugates,ADC)以及免疫治疗为晚期乳腺癌患者提供了新的治疗选项。本次年会所展现的研究成果,不仅代表了乳腺癌治疗领域的进步,也为未来的研究方向和患者治疗策略提供了新的视野。本文就此次年会上重点的研究进展进行综述。