为分析合取范式(conjunctive normal form,CNF)公式的赋值空间在可满足性情况下的结构性质,引入一个变元翻转次数控制的参数k,k不小于1且不大于n,n为公式中出现的变元个数,以赋值作为结点,基于翻转界控制下赋值满足子句数的大小,引入一...为分析合取范式(conjunctive normal form,CNF)公式的赋值空间在可满足性情况下的结构性质,引入一个变元翻转次数控制的参数k,k不小于1且不大于n,n为公式中出现的变元个数,以赋值作为结点,基于翻转界控制下赋值满足子句数的大小,引入一类有向图——BF(bounded flips)图。研究带翻转控制参数的BF图的若干基础性质,根据BF图的性质研究CNF公式可满足解的概率性质。对于含有n个变元m个子句CNF公式,随着翻转控制参数k的增大,在其BF图上取得可满足解的概率也相应增大。当k靠近n时,概率稳定。对于可满足的CNF公式,在其任意k值下的BF图上进行t次随机游走。当t足够大时,取得可满足解的概率最终会收敛于1。最后,实验仿真支持性质的正确性。展开更多
Boolean satisfiability (SAT) is widely used as a solver engine in electronic design automation (EDA). Typically, SAT is used to determine whether one or more groups of variables can be combined to form a true formula....Boolean satisfiability (SAT) is widely used as a solver engine in electronic design automation (EDA). Typically, SAT is used to determine whether one or more groups of variables can be combined to form a true formula. All solutions SAT (AllSAT) is a variant of the SAT problem. In the fields of formal verification and pattern generation, AllSAT is particularly useful because it efficiently enumerates all possible solutions. In this paper, a semi-tensor product (STP) based AllSAT solver is proposed. The solver can solve instances described in both the conjunctive normal form (CNF) and circuit form. The implementation of our method differs from incremental enumeration because we do not add blocking conditions for existing solutions, but rather compute the matrices to obtain all the solutions in one pass. Additionally, the logical matrices support a variety of logic operations. Results from experiments with MCNC benchmarks using CNF-based and circuit-based forms show that our method can accelerate CPU time by 8.1x (238x maximum) and 19.9x (72x maximum), respectively.展开更多
文摘为分析合取范式(conjunctive normal form,CNF)公式的赋值空间在可满足性情况下的结构性质,引入一个变元翻转次数控制的参数k,k不小于1且不大于n,n为公式中出现的变元个数,以赋值作为结点,基于翻转界控制下赋值满足子句数的大小,引入一类有向图——BF(bounded flips)图。研究带翻转控制参数的BF图的若干基础性质,根据BF图的性质研究CNF公式可满足解的概率性质。对于含有n个变元m个子句CNF公式,随着翻转控制参数k的增大,在其BF图上取得可满足解的概率也相应增大。当k靠近n时,概率稳定。对于可满足的CNF公式,在其任意k值下的BF图上进行t次随机游走。当t足够大时,取得可满足解的概率最终会收敛于1。最后,实验仿真支持性质的正确性。
基金supported in part by the National Natural Science Foundation of China under Grant No.61871242in part by the State Key Laboratory of ASIC(Application Specific Integrated Circuit)&System of China under Grant No.2021KF008.
文摘Boolean satisfiability (SAT) is widely used as a solver engine in electronic design automation (EDA). Typically, SAT is used to determine whether one or more groups of variables can be combined to form a true formula. All solutions SAT (AllSAT) is a variant of the SAT problem. In the fields of formal verification and pattern generation, AllSAT is particularly useful because it efficiently enumerates all possible solutions. In this paper, a semi-tensor product (STP) based AllSAT solver is proposed. The solver can solve instances described in both the conjunctive normal form (CNF) and circuit form. The implementation of our method differs from incremental enumeration because we do not add blocking conditions for existing solutions, but rather compute the matrices to obtain all the solutions in one pass. Additionally, the logical matrices support a variety of logic operations. Results from experiments with MCNC benchmarks using CNF-based and circuit-based forms show that our method can accelerate CPU time by 8.1x (238x maximum) and 19.9x (72x maximum), respectively.