Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir...The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics b...Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi...The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.展开更多
Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to ...Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c...Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and...Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.展开更多
AIM:To explore the brain mechanism of acupuncture for children with anisometropic amblyopia using the voxelmirror homotopic connectivity(VMHC)analysis method of resting functional magnetic resonance imaging(rs-fMRI)te...AIM:To explore the brain mechanism of acupuncture for children with anisometropic amblyopia using the voxelmirror homotopic connectivity(VMHC)analysis method of resting functional magnetic resonance imaging(rs-fMRI)technology based on clinical effectiveness.METHODS:Eighty children with anisometropic monocular amblyopia were randomly divided into two groups:control(40 cases,1 case of shedding)and acupuncture(40 cases,1 case of shedding)groups.The control group was treated with glasses,red flash,grating,and visual stimulations,with each procedure conducted for 5min per time.Based on routine treatment,the acupuncture group underwent acupuncture of“regulating qi and unblocking meridians to bright eyes”,Jingming(BL1),Cuanzhu(BL2),Guangming(GB37),Fengchi(GB20)acupoints were taken on both sides,with the needle kept for 30min each time.Both groups were treated once every other day,three times per week,for a total of 4wk.After the treatment,the overall curative effect of the two groups and the latency and amplitude changes of P100 wave of pattern visual-evoked potential were counted.At the same time,nine children with left eye amblyopia were randomly selected from the two groups and were scanned with rsfMRI before and after treatment.The differences in the brain regions between the two groups were compared and analyzed with VMHC.RESULTS:Chi-square test showed a notable difference in the total efficiency rate between the acupuncture(94.87%)and control groups(79.49%).Regarding the P100 wave latency and amplitude,the acupuncture group had significantly shorter latency and higher amplitude of P100 wave than the control group.Moreover,the VMHC values of the bilateral temporal lobe,superior temporal gyrus,and middle temporal gyrus were notably increased in the acupuncture group after treatment.CONCLUSION:Acupuncture combined with conventional treatment can significantly improve the corrected visual acuity and optic nerve conduction in children with anisometropic amblyopia.Compared with the conventional treatment,the regulation of acupuncture on the functional activities of the relevant brain areas in the anterior cerebellum may be an effective acupuncture mechanism for anisometropic amblyopia.展开更多
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金supported by NSFC project(grant No.61971359)Chongqing Municipal Key Laboratory of Institutions of Higher Education(grant No.cquptmct-202104)+1 种基金Fundamental Research Funds for the Central Universities,Sichuan Science and Technology Project(grant no.2021YFQ0053)State Key Laboratory of Rail Transit Engineering Informatization(FSDI).
文摘The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
文摘Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金the support of the National Nature Science Foundation of China(No.52074336)Emerging Big Data Projects of Sinopec Corporation(No.20210918084304712)。
文摘The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.
基金supported by the National Natural Science Foundation of China(No.62001045)Beijing Municipal Natural Science Foundation(No.4214059)+1 种基金Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT17)Fundamental Research Funds for the Central Universities(No.2022RC09).
文摘Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
基金supported by an internal grant of the University of Ostrava[SGS10/PřF/2021-Specificity of fluvial landscape in the context of historical and future changes].
文摘Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金Under the auspices of the National Natural Science Foundation of China(No.41971202)the National Natural Science Foundation of China(No.42201181)the Fundamental research funding targets for central universities(No.2412022QD002)。
文摘Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.
基金Supported by National Natural Science Foundation of China(No.82160935,No.82260965)Traditional Chinese Medicine Discipline“Qi Huang Ying Cai”Tutor Special Fund Doctoral Program(No.ZYXKBD-202208)+4 种基金Higher Education Innovation Fund Project of Gansu Province(No.2021A-087)Natural Science Foundation of Gansu Province(No.22JR5RA583)Traditional Chinese Medicine Discipline“Qi Huang Ying Cai”Tutor Special Fund Master’s Supervisor Program(No.ZYXKSD-202220)Youth Research Fund Project of Gansu University of Chinese Medicine(No.ZQ2017-9)Gansu Province 2023 Provincial Key Talent Project(No.2).
文摘AIM:To explore the brain mechanism of acupuncture for children with anisometropic amblyopia using the voxelmirror homotopic connectivity(VMHC)analysis method of resting functional magnetic resonance imaging(rs-fMRI)technology based on clinical effectiveness.METHODS:Eighty children with anisometropic monocular amblyopia were randomly divided into two groups:control(40 cases,1 case of shedding)and acupuncture(40 cases,1 case of shedding)groups.The control group was treated with glasses,red flash,grating,and visual stimulations,with each procedure conducted for 5min per time.Based on routine treatment,the acupuncture group underwent acupuncture of“regulating qi and unblocking meridians to bright eyes”,Jingming(BL1),Cuanzhu(BL2),Guangming(GB37),Fengchi(GB20)acupoints were taken on both sides,with the needle kept for 30min each time.Both groups were treated once every other day,three times per week,for a total of 4wk.After the treatment,the overall curative effect of the two groups and the latency and amplitude changes of P100 wave of pattern visual-evoked potential were counted.At the same time,nine children with left eye amblyopia were randomly selected from the two groups and were scanned with rsfMRI before and after treatment.The differences in the brain regions between the two groups were compared and analyzed with VMHC.RESULTS:Chi-square test showed a notable difference in the total efficiency rate between the acupuncture(94.87%)and control groups(79.49%).Regarding the P100 wave latency and amplitude,the acupuncture group had significantly shorter latency and higher amplitude of P100 wave than the control group.Moreover,the VMHC values of the bilateral temporal lobe,superior temporal gyrus,and middle temporal gyrus were notably increased in the acupuncture group after treatment.CONCLUSION:Acupuncture combined with conventional treatment can significantly improve the corrected visual acuity and optic nerve conduction in children with anisometropic amblyopia.Compared with the conventional treatment,the regulation of acupuncture on the functional activities of the relevant brain areas in the anterior cerebellum may be an effective acupuncture mechanism for anisometropic amblyopia.
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.