In order to make rail transit smart stations serve passengers better,the potential of smart stations should be optimized to reduce time cost,and relieve traffic congestion.In this paper,the construction of smart stati...In order to make rail transit smart stations serve passengers better,the potential of smart stations should be optimized to reduce time cost,and relieve traffic congestion.In this paper,the construction of smart stations based on the management experience of a subway station and the benefits of smart stations were analyzed and discussed.The construction of smart stations,as well as the key technologies for the construction of smart stations,will aid in the automation and intelligent management of subway stations.展开更多
Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, c...Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.展开更多
The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking en...The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.展开更多
According to the study on 39 sites of rail transit Line 3 in Chongqing, the sites are classifi ed into three types: residential type, business center type, traffi c hub type in this paper. The study shows that the sit...According to the study on 39 sites of rail transit Line 3 in Chongqing, the sites are classifi ed into three types: residential type, business center type, traffi c hub type in this paper. The study shows that the sites have many problems such as discordance of land use, severity of spatial segregation, low rate of site utilization. To solve these problems, development approaches of site space resources within 1,000 m around the site area are further explored. The approaches include four aspects: characteristics of land use, functional composite, walking guide and shuttle transportation. In addition, appropriate planning and design methods are proposed.展开更多
Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger ...Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger volume distribution. Influenced urban realm around station becomes the focus of the optimization of the sustainable urban development. Pedestrian microscopic simulation method establishes the comprehensive dynamic behavior rules in a part of urban space through simulating the behavior law by digital tools, in which the internal demand and motive mechanism of the development and change of urban space fairly well by digital representing and analyzing relevant laws can be explained. After that, the research with the realm as the carrier analyzed the demand of each simulation level and the choice of simulation parameters based on analyzing the walking connection behavior characteristics, and then further established the methodology system of pedestrian microscopic simulation. At last, the research taking the study of influenced urban realm around typical station for sample explored the application method of optimizing of urban space and traffic organization based on AnyLogic platform.展开更多
The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the anal...The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.展开更多
Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of...Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.Design/methodology/approach–The authors optimize the train operational plan in a special network layout,i.e.an urban rail corridor with dead-end terminal yard,by decomposing it into two sub-problems:train timetable optimization and rolling stock circulation optimization.As for train timetable optimization,the authors propose a schedule-based passenger flow assignment method,construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm.For the optimization of rolling stock circulation,the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.Findings–The case study shows that the train operational plan developed by the study’s approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.Originality/value–The example verifies the efficiency of the model and algorithm.展开更多
The electricity consumption of the urban metro system can be mainly divided into the following two categories:the electricity consumption for train traction(E_(t))and the electricity consumption for station operation(...The electricity consumption of the urban metro system can be mainly divided into the following two categories:the electricity consumption for train traction(E_(t))and the electricity consumption for station operation(E_(s)).Although understanding the hourly fluctuation characteristics of E_(t) and E_(s) contributes to renewable energy inte-gration and achieving carbon emission reduction of the metro system,the hourly fluctuation characteristics have been poorly reported in the literature.Thus,a typical underground non-transfer metro station of a city’s metro system in the North China Plain is selected in this study,and E_(t) and E_(s) were monitored to portray their hourly fluctuation characteristics.Results reveal that the hourly E_(t) shows a significant intraday“U”shape on weekdays,indicating two symmetric peaks in morning and evening rush hours.While the hourly E_(s) shows an intraday“flat”shape,indicating it is nearly free from the effect of rush hour.Moreover,it is statistically proved that the train frequency is the core influencing factor resulting in the intraday fluctuation of hourly E_(t).In the case study,when the train frequency increases from the mean(20 trains per hour)to maximum(32 trains per hour),the hourly E_(t) will increase by 53.4%.展开更多
文摘In order to make rail transit smart stations serve passengers better,the potential of smart stations should be optimized to reduce time cost,and relieve traffic congestion.In this paper,the construction of smart stations based on the management experience of a subway station and the benefits of smart stations were analyzed and discussed.The construction of smart stations,as well as the key technologies for the construction of smart stations,will aid in the automation and intelligent management of subway stations.
文摘Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.
基金Sponsored by National Youth Science Foundation(51408507)China Postdoctoral Science Foundation(2015M570385)
文摘According to the study on 39 sites of rail transit Line 3 in Chongqing, the sites are classifi ed into three types: residential type, business center type, traffi c hub type in this paper. The study shows that the sites have many problems such as discordance of land use, severity of spatial segregation, low rate of site utilization. To solve these problems, development approaches of site space resources within 1,000 m around the site area are further explored. The approaches include four aspects: characteristics of land use, functional composite, walking guide and shuttle transportation. In addition, appropriate planning and design methods are proposed.
文摘Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger volume distribution. Influenced urban realm around station becomes the focus of the optimization of the sustainable urban development. Pedestrian microscopic simulation method establishes the comprehensive dynamic behavior rules in a part of urban space through simulating the behavior law by digital tools, in which the internal demand and motive mechanism of the development and change of urban space fairly well by digital representing and analyzing relevant laws can be explained. After that, the research with the realm as the carrier analyzed the demand of each simulation level and the choice of simulation parameters based on analyzing the walking connection behavior characteristics, and then further established the methodology system of pedestrian microscopic simulation. At last, the research taking the study of influenced urban realm around typical station for sample explored the application method of optimizing of urban space and traffic organization based on AnyLogic platform.
基金supported by the National Natural Science Foundation of China (No. 70901076)Research Fund for the Doctoral Program of Higher Education of China (No. 20090162120021)Natural Science Foundation of Hunan Province (No. 10JJ4046)
文摘The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.
基金funded by the National Natural Science Foundation of China(71701216,71171200).
文摘Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.Design/methodology/approach–The authors optimize the train operational plan in a special network layout,i.e.an urban rail corridor with dead-end terminal yard,by decomposing it into two sub-problems:train timetable optimization and rolling stock circulation optimization.As for train timetable optimization,the authors propose a schedule-based passenger flow assignment method,construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm.For the optimization of rolling stock circulation,the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.Findings–The case study shows that the train operational plan developed by the study’s approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.Originality/value–The example verifies the efficiency of the model and algorithm.
基金This research was supported by the Science&Technology Project of the State Grid Corporation of China(5400-202219175A-1-1-ZN)Sichuan Science and Technology Planning Project(2019YFSY0009).
文摘The electricity consumption of the urban metro system can be mainly divided into the following two categories:the electricity consumption for train traction(E_(t))and the electricity consumption for station operation(E_(s)).Although understanding the hourly fluctuation characteristics of E_(t) and E_(s) contributes to renewable energy inte-gration and achieving carbon emission reduction of the metro system,the hourly fluctuation characteristics have been poorly reported in the literature.Thus,a typical underground non-transfer metro station of a city’s metro system in the North China Plain is selected in this study,and E_(t) and E_(s) were monitored to portray their hourly fluctuation characteristics.Results reveal that the hourly E_(t) shows a significant intraday“U”shape on weekdays,indicating two symmetric peaks in morning and evening rush hours.While the hourly E_(s) shows an intraday“flat”shape,indicating it is nearly free from the effect of rush hour.Moreover,it is statistically proved that the train frequency is the core influencing factor resulting in the intraday fluctuation of hourly E_(t).In the case study,when the train frequency increases from the mean(20 trains per hour)to maximum(32 trains per hour),the hourly E_(t) will increase by 53.4%.