Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re...Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents...Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.展开更多
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info...Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .展开更多
In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling p...In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling process of microwave pulse into a slot is studied by using the modified FD-TD method, and the dependence of microwave coupling on slot sizes, the carrier frequencies and the polarization directions of the incident waves is analysed. Resonant and enhancement effects which occur in this process are observed. The condition at which the resonant effect takes place is also presented.展开更多
The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study wa...The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study was to measure the uptake, forms, and use efficiency of phosphorus (P) in wheat under four levels of irrigation (W0, W1, W2, and W3) and three levels of P application (P0, P1, and P2) through two growth seasons of wheat (2008-2010). The field experiment was carried out in a low level of soil P concentration and the eultivar was Jimai 20. The results indicated that P fertilizer combined with irrigation not only improved the activity of phosphatase in soil, but also increased P accumulation in wheat, similar results was found in the grain of wheat, the content of total P increased significantly. Meanwhile, the mainly existence forms of P in grain were the lecithoid-P and labile organic-P. On the other hand, in comparison to the irrigation, the dry matter and grain P production efficiency and postponing P application of wheat increased with increasing Papplication rates within the range of 0-180 kg P2O5 ha-1. The interaction between P and irrigation also significantly (P〈0.01) affected on the P accumulation, grain total P, grain phospholipid P, and P production efficiency. In this study, therefore, the P applications and irrigation improved grain P production efficiency and postponing P application of winter wheat, and W2P2 treatment (180 kg P2O5 ha-1 combination with 120 mm irrigation) had a high P accumulation and P use efficiency, it was an optimum level for P fertilizer application and irrigation in this region.展开更多
As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture...As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.展开更多
The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric ...The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.展开更多
Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, sim...Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, simulating the water particle movements with periodically changing direction under the wave action. Characteristic times and phases during the instability process are revealed. Linear relationship between Froude number and non-dimensional pipe weight is obtained. Effects of initial embedment and loading history are observed. Test results between the wavesoil-pipe interaction and pipe-soil interaction under cyclic mechanical loading are compared. The mechanism is briefly discussed. For applying in the practical design, more extensive and systematic investigations are needed.展开更多
A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensur...A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.展开更多
The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of...The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths.It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock.It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma-tion of the surrounding rock by a pre-stress and time-space effect of the anchor support.The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.展开更多
In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the...In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SO1 FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.展开更多
Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertili...Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.展开更多
In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the hi...In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.展开更多
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th...Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.展开更多
Simulating the coupling effect brought by freeze-thaw and carbonation environment, we experimentally investigated concrete durability, the variation characteristics of both concrete dynamic elastic modulus, and its ne...Simulating the coupling effect brought by freeze-thaw and carbonation environment, we experimentally investigated concrete durability, the variation characteristics of both concrete dynamic elastic modulus, and its neutralization depth. The influences imposed by carbonation on the freeze-thaw damage of concrete was studied as well and vise versa so as to shed light on the influencing mechanism together with the mutual interaction between them. The experimental results show that the damage caused by the coupling effect of freeze-thaw and carbonation on concrete is severer than any single effect of them two could bring. This provides certain theoretical references and paves down foundations for the further study in concrete durability related by the coupling environmental effect.展开更多
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling we...The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.展开更多
Based on the limit analysis upper bound method,a new model of soil slope collapse has been proposed which consists of two rigid block zones and a plastic shear zone.Soil slope was induced failure by coupling effect of...Based on the limit analysis upper bound method,a new model of soil slope collapse has been proposed which consists of two rigid block zones and a plastic shear zone.Soil slope was induced failure by coupling effect of rainfall and earthquake,and these blocks were also incorporated horizontal earthquake force and vertical gravitate.The velocities and forces were analyzed in three blocks,and the expression of velocity discontinuities was obtained by the principle of incompressibility.The external force work for the blocks,the internal energy of the plastic shear zone and the velocity discontinuous were solved.The present stability ratios are compared to the prevenient research,which shows the superiority of the mechanism and rationality of the analysis.The critical height of the soil slope can provide theoretical basis for slope support and design.展开更多
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite wi...There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.展开更多
High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical propert...High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region.展开更多
基金the support provided by the National Natural Science Foundation of China(Grant Nos.52278336 and 42302032)Guangdong Basic and Applied Research Foundation(Grant Nos.2023B1515020061).
文摘Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
文摘Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.
文摘Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .
文摘In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling process of microwave pulse into a slot is studied by using the modified FD-TD method, and the dependence of microwave coupling on slot sizes, the carrier frequencies and the polarization directions of the incident waves is analysed. Resonant and enhancement effects which occur in this process are observed. The condition at which the resonant effect takes place is also presented.
基金financial supported by the National Natural Science Foundation of China(30900876 and 31101127)the Key Technology R&D Program of China(2012BAD14B17)+1 种基金the Special Research Funding for Public Benefit Industries (Agriculture) of China(201103001)the Major Innovation Project for Applied Technology of Shandong Province,China
文摘The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study was to measure the uptake, forms, and use efficiency of phosphorus (P) in wheat under four levels of irrigation (W0, W1, W2, and W3) and three levels of P application (P0, P1, and P2) through two growth seasons of wheat (2008-2010). The field experiment was carried out in a low level of soil P concentration and the eultivar was Jimai 20. The results indicated that P fertilizer combined with irrigation not only improved the activity of phosphatase in soil, but also increased P accumulation in wheat, similar results was found in the grain of wheat, the content of total P increased significantly. Meanwhile, the mainly existence forms of P in grain were the lecithoid-P and labile organic-P. On the other hand, in comparison to the irrigation, the dry matter and grain P production efficiency and postponing P application of wheat increased with increasing Papplication rates within the range of 0-180 kg P2O5 ha-1. The interaction between P and irrigation also significantly (P〈0.01) affected on the P accumulation, grain total P, grain phospholipid P, and P production efficiency. In this study, therefore, the P applications and irrigation improved grain P production efficiency and postponing P application of winter wheat, and W2P2 treatment (180 kg P2O5 ha-1 combination with 120 mm irrigation) had a high P accumulation and P use efficiency, it was an optimum level for P fertilizer application and irrigation in this region.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879161)
文摘As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.
文摘The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.
基金The project supported by the National Natural Science Foundation of China (19772057,19772065) and by the Chinese Academy of Sciences (KZ951-A1-405-01)
文摘Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, simulating the water particle movements with periodically changing direction under the wave action. Characteristic times and phases during the instability process are revealed. Linear relationship between Froude number and non-dimensional pipe weight is obtained. Effects of initial embedment and loading history are observed. Test results between the wavesoil-pipe interaction and pipe-soil interaction under cyclic mechanical loading are compared. The mechanism is briefly discussed. For applying in the practical design, more extensive and systematic investigations are needed.
基金supported by the National High Technology Research and Development Program of China(863)(511-0910-1031)the National"10th Five-Year"Science and Technique Important Program of China(2002BA404A07)
文摘A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.
基金Projects 2006CB202200 supported by the National Basic Research Program of ChinaNCET07-0800 by the Program for New Century Excellent Talents in Universities
文摘The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths.It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock.It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma-tion of the surrounding rock by a pre-stress and time-space effect of the anchor support.The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.
基金supported by the Research Program of the National University of Defense Technology(Grant No.JC 13-06-04)
文摘In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SO1 FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.
文摘Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.
基金financially supported by the Ministry of Industry and Information Technology of China(Grant No.[2016]546)
文摘In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.
基金Project(2018YFB1501805)supported by the National Key Research and Development Program of ChinaProject(51406130)supported by the National Natural Science Foundation of ChinaProject(201604-504)supported by the Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University),China
文摘Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.
基金Funded by the National Natural Science Foundation of China (No.50538060)
文摘Simulating the coupling effect brought by freeze-thaw and carbonation environment, we experimentally investigated concrete durability, the variation characteristics of both concrete dynamic elastic modulus, and its neutralization depth. The influences imposed by carbonation on the freeze-thaw damage of concrete was studied as well and vise versa so as to shed light on the influencing mechanism together with the mutual interaction between them. The experimental results show that the damage caused by the coupling effect of freeze-thaw and carbonation on concrete is severer than any single effect of them two could bring. This provides certain theoretical references and paves down foundations for the further study in concrete durability related by the coupling environmental effect.
基金supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.
基金National Natural Science Foundation of China(No.51478444)
文摘Based on the limit analysis upper bound method,a new model of soil slope collapse has been proposed which consists of two rigid block zones and a plastic shear zone.Soil slope was induced failure by coupling effect of rainfall and earthquake,and these blocks were also incorporated horizontal earthquake force and vertical gravitate.The velocities and forces were analyzed in three blocks,and the expression of velocity discontinuities was obtained by the principle of incompressibility.The external force work for the blocks,the internal energy of the plastic shear zone and the velocity discontinuous were solved.The present stability ratios are compared to the prevenient research,which shows the superiority of the mechanism and rationality of the analysis.The critical height of the soil slope can provide theoretical basis for slope support and design.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
基金supported by the National Natural Science Foundation of China (41941018)supported by Beijing Natural Science Foundation (8212033)+1 种基金supported by the Fundamental Research Funds for the Central Universities (2021YJSLI13,2021JCCXLJ05)supported by Innovation Fund Research Project (SKLGDUEK202221).
文摘High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region.