Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing condition...Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.展开更多
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) durin...Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.展开更多
基金Special Scientific Research Fund of Meteorological Public Welfare Industries of China(GYHY(QX)2007-6-1)National Nature Science Foundation of China(41305081)
文摘Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.
基金National Natural Science Foundation of Ningbo City(2013A610124)Ningbo Planning Project of Science and Technology(2012C50044)Nanhai Disaster Mitigation Fund of Hainan Provincial Meteorological Bureau(NH2008ZY02)
文摘Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.