For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,...For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.展开更多
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-...In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.展开更多
Consider the following 2×2 nonlinear system:where f(u): R→R is a, smooth function. Setwhere F’(u)= f(u). Then (1) can be rewritten as an equivalent Hamiltonian system:
For a one-dimensional conservative system with position depending mass, one deduces consistently a constant of motion, a Lagrangian, and a Hamiltonian for the nonrelativistic case. With these functions, one shows the ...For a one-dimensional conservative system with position depending mass, one deduces consistently a constant of motion, a Lagrangian, and a Hamiltonian for the nonrelativistic case. With these functions, one shows the trajectories on the spaces (x,v) and (x,p) for a linear position depending mass. For the relativistic case, the Lagrangian and Hamiltonian cannot be given explicitly in general. However, we study the particular system with constant force and mass linear dependence on the position where the Lagrangian can be found explicitly, but the Hamiltonian remains implicit in the constant of motion.展开更多
Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traver...Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.展开更多
The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are g...The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.展开更多
In this paper,we investigate the long-time near-conservations of energy and kinetic energy by the widely used exponential integrators to highly oscillatory conservative systems.The modulated Fourier expansions of two ...In this paper,we investigate the long-time near-conservations of energy and kinetic energy by the widely used exponential integrators to highly oscillatory conservative systems.The modulated Fourier expansions of two kinds of exponential integrators have been constructed and the long-time numerical conservations of energy and kinetic energy are obtained by deriving two almost-invariants of the expansions.Practical examples of the methods are given and the theoretical results are confirmed and demonstrated by a numerical experiment.展开更多
Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constr...Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constrained forces and Lagrangian, non-Noether symmetries and Lutzky conservative quantities are presented for nonholonomic nonconservative dynamical systems. The relation between non-Noether symmetry and Noether symmetry is discussed and it is further shown that non-Noether conservative quantities can be obtained by a complete set of Noether invariants. Finally, an example is given to illustrate these results.展开更多
Based on the property of the discrete model entirely inheriting the symmetry of the continuous system,we present a method to construct exact solutions with continuous groups of transformations in discrete nonconservat...Based on the property of the discrete model entirely inheriting the symmetry of the continuous system,we present a method to construct exact solutions with continuous groups of transformations in discrete nonconservative systems.The Noether's identity of the discrete nonconservative system is obtained.The symmetric discrete Lagrangian and symmetric discrete nonconservative forces are defined for the system.Generalized quasi-extremal equations of discrete nonconservative systems are presented.Discrete conserved quantities are derived with symmetries associated with the continuous system.We have also found that the existence of the one-parameter symmetry group provides a reduction to a conserved quantity;but the existence of a two-parameter symmetry group makes it possible to obtain an exact solution for a discrete nonconservative system.Several examples are discussed to illustrate these results.展开更多
We derive a new method for a coupled nonlinear Schr/Sdinger system by using the square of first-order Fourier spectral differentiation matrix D1 instead of traditional second-order Fourier spectral differentiation mat...We derive a new method for a coupled nonlinear Schr/Sdinger system by using the square of first-order Fourier spectral differentiation matrix D1 instead of traditional second-order Fourier spectral differentiation matrix D2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm.展开更多
This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infini...This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.展开更多
Controllability and stabilizability are a pair of important topics in control theory for distributed parameter systems. In the present note we show the equivalentness between controllability and stabilizability for co...Controllability and stabilizability are a pair of important topics in control theory for distributed parameter systems. In the present note we show the equivalentness between controllability and stabilizability for conservative systems as well as necessary and sufficient展开更多
This paper investigates the Lie symmetries and Noether conserved quantities of discrete non-conservative mechanical systems. The variational principle of discrete mechanics, from which discrete motion equations of sys...This paper investigates the Lie symmetries and Noether conserved quantities of discrete non-conservative mechanical systems. The variational principle of discrete mechanics, from which discrete motion equations of systems are deduced, is generalized to the case of including the time variational. The requirement for an invariant group transformation is defined to be the Lie symmetry and the criterion when the Noether conserved quantities may be obtained from Lie symmetries is also presented. An example is discussed for applications of the results.展开更多
In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
AIM:To assess the role of orthoptics in referring patients with orbital floor blowout fracture(OFBF)for conservative or surgical treatment and based on the results,to propose a scoring system for such decision making....AIM:To assess the role of orthoptics in referring patients with orbital floor blowout fracture(OFBF)for conservative or surgical treatment and based on the results,to propose a scoring system for such decision making.METHODS:A retrospective analysis of 69 patients with OFBF was performed(35 treated conservatively,34 surgically).The role of orthoptics in referring to surgery or conservative treatment was retrospectively evaluated,the factors with the highest significance for decision making were identified,and a scoring system proposed using Logistic regression.RESULTS:According to defined criteria,the treatment was unsuccessful in 2(6%)surgically treated and only in one(3%)conservatively treated patient.The proposed scoring system includes the defect size and several values resulting from the orthoptic examination,the elevation of the eyebulb measured on Lancaster screen being the most significant.CONCLUSION:The study demonstrates the benefits of orthoptic examination when making decisions on conservative or surgical treatment and for diagnosing ocular motility disorder(with or without binocular diplopia)in OFBF patients.The proposed scoring system could,following verification in a prospective study,become a valuable adjunctive tool.展开更多
In this paper conservation laws of nonholonomic nonconservative dynamical systems are studied by using the differential variational principles of Jourdain and the generalized Noether's identi- ties of nonconservat...In this paper conservation laws of nonholonomic nonconservative dynamical systems are studied by using the differential variational principles of Jourdain and the generalized Noether's identi- ties of nonconservative systems subject to first order nonlinear nonholonomic constraints are provided.展开更多
This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order...This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.展开更多
The thermostatted system is a conservative system different from Hamiltonian systems,and has attracted much attention because of its rich and different nonlinear dynamics.We report and analyze the multiple equilibria ...The thermostatted system is a conservative system different from Hamiltonian systems,and has attracted much attention because of its rich and different nonlinear dynamics.We report and analyze the multiple equilibria and curve axes of the cluster-shaped conservative flows generated from a generalized thermostatted system.It is found that the cluster-shaped structure is reflected in the geometry of the Hamiltonian,such as isosurfaces and local centers,and the shapes of cluster-shaped chaotic flows and invariant tori rely on the isosurfaces determined by initial conditions,while the numbers of clusters are subject to the local centers solved by the Hessian matrix of the Hamiltonian.Moreover,the study shows that the cluster-shaped chaotic flows and invariant tori are chained together by curve axes,which are the segments of equilibrium curves of the generalized thermostatted system.Furthermore,the interesting results are vividly demonstrated by the numerical simulations.展开更多
Based on the total time derivative along the trajectory of the system, for noneonservative dynamical system, the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is studied. Fi...Based on the total time derivative along the trajectory of the system, for noneonservative dynamical system, the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is studied. Firstly, the Lie symmetry of the system is given. Then, the necessary and sumeient condition under which the Lie symmetry is a Mei symmetry is presented and the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is obtained. Lastly, an example is given to illustrate the application of the result.展开更多
In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the sy...In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the system directly induces the Mei conserved quantity is given.Meanwhile,an example is discussed to illustrate the application of the results.The present results have shown that the Lie symmetry of a nonconservative Hamilton system can also induce the Mei conserved quantity directly.展开更多
基金国家自然科学基金,湖南省自然科学基金,the Scientific Research Foundation of Education Burean of Hunan Province
文摘For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143, 10471145 and 10372053) and the Natural Science Foundation of Henan Province Government of China(Grant Nos 0511022200 and 0311011400).
文摘In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.
基金Supported by NSFC (Grant No. 10071030) partially by Volkswagen Stiftung, Germany
文摘Consider the following 2×2 nonlinear system:where f(u): R→R is a, smooth function. Setwhere F’(u)= f(u). Then (1) can be rewritten as an equivalent Hamiltonian system:
文摘For a one-dimensional conservative system with position depending mass, one deduces consistently a constant of motion, a Lagrangian, and a Hamiltonian for the nonrelativistic case. With these functions, one shows the trajectories on the spaces (x,v) and (x,p) for a linear position depending mass. For the relativistic case, the Lagrangian and Hamiltonian cannot be given explicitly in general. However, we study the particular system with constant force and mass linear dependence on the position where the Lagrangian can be found explicitly, but the Hamiltonian remains implicit in the constant of motion.
基金Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project,China (Grant No.LH2020F022)the Fundamental Research Funds for the Central Universities,China (Grant No.3072022CF0801)。
文摘Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.
基金The project supported by the Natural Science Foundation of Heilongjiang Province of China under Grant No. 9507
文摘The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.
基金supported by the Natural Science Foundation of China under Grants 11801280,12071419the Natural Science Foundation of Jiangsu Province under Grant BK20180780.
文摘In this paper,we investigate the long-time near-conservations of energy and kinetic energy by the widely used exponential integrators to highly oscillatory conservative systems.The modulated Fourier expansions of two kinds of exponential integrators have been constructed and the long-time numerical conservations of energy and kinetic energy are obtained by deriving two almost-invariants of the expansions.Practical examples of the methods are given and the theoretical results are confirmed and demonstrated by a numerical experiment.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No 10372053) and the Natural Science Foundation of Henan Province Government, China (Grant Nos 0311011400, 0511022200).
文摘Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constrained forces and Lagrangian, non-Noether symmetries and Lutzky conservative quantities are presented for nonholonomic nonconservative dynamical systems. The relation between non-Noether symmetry and Noether symmetry is discussed and it is further shown that non-Noether conservative quantities can be obtained by a complete set of Noether invariants. Finally, an example is given to illustrate these results.
基金supported by the National Natural Science Foundation of China (Grant No.10672143)
文摘Based on the property of the discrete model entirely inheriting the symmetry of the continuous system,we present a method to construct exact solutions with continuous groups of transformations in discrete nonconservative systems.The Noether's identity of the discrete nonconservative system is obtained.The symmetric discrete Lagrangian and symmetric discrete nonconservative forces are defined for the system.Generalized quasi-extremal equations of discrete nonconservative systems are presented.Discrete conserved quantities are derived with symmetries associated with the continuous system.We have also found that the existence of the one-parameter symmetry group provides a reduction to a conserved quantity;but the existence of a two-parameter symmetry group makes it possible to obtain an exact solution for a discrete nonconservative system.Several examples are discussed to illustrate these results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11201169 and 11271195)the National Basic Research Program of China (Grant No. 2010AA012304)+1 种基金the Natural Science Foundation of Jiangsu Education Bureau,China (Grant Nos. 10KJB110001 and 12KJB110002)the Qing Lan Project of Jiangsu Province of China
文摘We derive a new method for a coupled nonlinear Schr/Sdinger system by using the square of first-order Fourier spectral differentiation matrix D1 instead of traditional second-order Fourier spectral differentiation matrix D2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472040, 10572021 and 10772025)the Outstanding Young Talents Training Found of Liaoning Province of China (Grant No 3040005)
文摘This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.
基金Project partially supported by the National Natural Science Foundation of China.
文摘Controllability and stabilizability are a pair of important topics in control theory for distributed parameter systems. In the present note we show the equivalentness between controllability and stabilizability for conservative systems as well as necessary and sufficient
基金Project supported by the National Natural Science Foundation of China (Grant No 10672143)the Natural Science Foundation of Henan Province,China (Grant No 0511022200)
文摘This paper investigates the Lie symmetries and Noether conserved quantities of discrete non-conservative mechanical systems. The variational principle of discrete mechanics, from which discrete motion equations of systems are deduced, is generalized to the case of including the time variational. The requirement for an invariant group transformation is defined to be the Lie symmetry and the criterion when the Noether conserved quantities may be obtained from Lie symmetries is also presented. An example is discussed for applications of the results.
文摘In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
基金the Ministry of Health,Czech Republic Conceptual Development of Research Organization(FNOs/2017).
文摘AIM:To assess the role of orthoptics in referring patients with orbital floor blowout fracture(OFBF)for conservative or surgical treatment and based on the results,to propose a scoring system for such decision making.METHODS:A retrospective analysis of 69 patients with OFBF was performed(35 treated conservatively,34 surgically).The role of orthoptics in referring to surgery or conservative treatment was retrospectively evaluated,the factors with the highest significance for decision making were identified,and a scoring system proposed using Logistic regression.RESULTS:According to defined criteria,the treatment was unsuccessful in 2(6%)surgically treated and only in one(3%)conservatively treated patient.The proposed scoring system includes the defect size and several values resulting from the orthoptic examination,the elevation of the eyebulb measured on Lancaster screen being the most significant.CONCLUSION:The study demonstrates the benefits of orthoptic examination when making decisions on conservative or surgical treatment and for diagnosing ocular motility disorder(with or without binocular diplopia)in OFBF patients.The proposed scoring system could,following verification in a prospective study,become a valuable adjunctive tool.
基金The project is supported by the National Natural Science Foundation of China.
文摘In this paper conservation laws of nonholonomic nonconservative dynamical systems are studied by using the differential variational principles of Jourdain and the generalized Noether's identi- ties of nonconservative systems subject to first order nonlinear nonholonomic constraints are provided.
基金supported by the National Natural Science Foun-dation of China (11172334)
文摘This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.
基金the National Natural Science Foundation of China(Grant Nos.61973175 and 61873186)the South African National Research Foundation(Grant No.132797)+1 种基金the South African National Research Foundation Incentive(Grant No.114911)the South African Eskom Tertiary Education Support Programme.
文摘The thermostatted system is a conservative system different from Hamiltonian systems,and has attracted much attention because of its rich and different nonlinear dynamics.We report and analyze the multiple equilibria and curve axes of the cluster-shaped conservative flows generated from a generalized thermostatted system.It is found that the cluster-shaped structure is reflected in the geometry of the Hamiltonian,such as isosurfaces and local centers,and the shapes of cluster-shaped chaotic flows and invariant tori rely on the isosurfaces determined by initial conditions,while the numbers of clusters are subject to the local centers solved by the Hessian matrix of the Hamiltonian.Moreover,the study shows that the cluster-shaped chaotic flows and invariant tori are chained together by curve axes,which are the segments of equilibrium curves of the generalized thermostatted system.Furthermore,the interesting results are vividly demonstrated by the numerical simulations.
文摘Based on the total time derivative along the trajectory of the system, for noneonservative dynamical system, the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is studied. Firstly, the Lie symmetry of the system is given. Then, the necessary and sumeient condition under which the Lie symmetry is a Mei symmetry is presented and the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is obtained. Lastly, an example is given to illustrate the application of the result.
基金Projct supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2011AM012)the Fundamental Research Funds for the Central Universities,China (Grant No. 09CX04018A)
文摘In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the system directly induces the Mei conserved quantity is given.Meanwhile,an example is discussed to illustrate the application of the results.The present results have shown that the Lie symmetry of a nonconservative Hamilton system can also induce the Mei conserved quantity directly.