Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traver...Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.展开更多
For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,...For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.展开更多
Consider the following 2×2 nonlinear system:where f(u): R→R is a, smooth function. Setwhere F’(u)= f(u). Then (1) can be rewritten as an equivalent Hamiltonian system:
We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider th...We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.展开更多
In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the sy...In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the system directly induces the Mei conserved quantity is given.Meanwhile,an example is discussed to illustrate the application of the results.The present results have shown that the Lie symmetry of a nonconservative Hamilton system can also induce the Mei conserved quantity directly.展开更多
Based on the total time derivative along the trajectory of the system, for noneonservative dynamical system, the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is studied. Fi...Based on the total time derivative along the trajectory of the system, for noneonservative dynamical system, the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is studied. Firstly, the Lie symmetry of the system is given. Then, the necessary and sumeient condition under which the Lie symmetry is a Mei symmetry is presented and the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is obtained. Lastly, an example is given to illustrate the application of the result.展开更多
The Mei symmetry of Tzénoff equations under the infinitesimal transformations of groups is studied in this paper. The definition and the criterion equations of the symmetry are given. If the symmetry is a Noether...The Mei symmetry of Tzénoff equations under the infinitesimal transformations of groups is studied in this paper. The definition and the criterion equations of the symmetry are given. If the symmetry is a Noether symmetry, then the Noether conserved quantity of the Tzénoff equations can be obtained by the Mei symmetry.展开更多
A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using ...A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using the symmetry. An example is given to illustrate the application of the result.展开更多
This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilt...This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.展开更多
Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tz...Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tzénoffequations are given.Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given.Hojman conserved quantity of Tzénoff equations for the system above through special Lie symmetry and Lie symmetryin the condition of special Mei symmetry respectively is obtained.展开更多
We explore the (2+l)-dimensional dispersive long-wave (DLW) system. From the standard truncated Painleve expansion, the Baicklund transformation (BT) and residual symmetries of this system are derived. The intr...We explore the (2+l)-dimensional dispersive long-wave (DLW) system. From the standard truncated Painleve expansion, the Baicklund transformation (BT) and residual symmetries of this system are derived. The introduction to an appropriate auxiliary dependent variable successfully localizes the residual symmetries to Lie point symmetries. In particular, it is verified that the (2+l)-dimensional DLW system is consistent Riccati expansion (CRE) solvable. If the special form of (CRE)-consistent tanh-function expansion (CTE) is taken, the soliton-cnoidal wave solutions and corresponding images can be explicitly given. Furthermore, the conservation laws of the DLW system are investigated with symmetries and Ibragimov theorem.展开更多
We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-elec...We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.展开更多
This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
This paper discusses the symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates. Firstly, the definition and the criterion of the symmetry are given. Secondly, the condition under which there exist...This paper discusses the symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates. Firstly, the definition and the criterion of the symmetry are given. Secondly, the condition under which there exists a conserved quantity and the form of the conserved quantity are obtained. Finally, an example is shown to illustrate the application of the results.展开更多
Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new con...Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are also obtained, An example is given to illustrate the application of the results.展开更多
This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions o...This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.展开更多
In this paper, the definition and the criterion of a unified symmetry are presented. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symm...In this paper, the definition and the criterion of a unified symmetry are presented. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are obtained. Some examples are given to illustrate the application of the results.展开更多
This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, ...This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.展开更多
Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Suf...Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.展开更多
In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the H...In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the Hamilton canonical equations with time delay are established. Secondly, according to the invariance of the function under the infinitesimal transformations of the group, the basic formulas for the variational of the Hamilton action with time delay are discussed, the definitions and the criteria of the Noether symmetric transformations and quasi-symmetric transformations with time delay are obtained, and the relationship between the Noether symmetry and the conserved quantity with time delay is studied. In addition, examples are given to illustrate the application of the results.展开更多
基金Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project,China (Grant No.LH2020F022)the Fundamental Research Funds for the Central Universities,China (Grant No.3072022CF0801)。
文摘Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.
基金国家自然科学基金,湖南省自然科学基金,the Scientific Research Foundation of Education Burean of Hunan Province
文摘For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.
基金Supported by NSFC (Grant No. 10071030) partially by Volkswagen Stiftung, Germany
文摘Consider the following 2×2 nonlinear system:where f(u): R→R is a, smooth function. Setwhere F’(u)= f(u). Then (1) can be rewritten as an equivalent Hamiltonian system:
文摘We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.
基金Projct supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2011AM012)the Fundamental Research Funds for the Central Universities,China (Grant No. 09CX04018A)
文摘In this paper,we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented.The condition under which the Lie symmetry of the system directly induces the Mei conserved quantity is given.Meanwhile,an example is discussed to illustrate the application of the results.The present results have shown that the Lie symmetry of a nonconservative Hamilton system can also induce the Mei conserved quantity directly.
文摘Based on the total time derivative along the trajectory of the system, for noneonservative dynamical system, the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is studied. Firstly, the Lie symmetry of the system is given. Then, the necessary and sumeient condition under which the Lie symmetry is a Mei symmetry is presented and the generalized Mei conserved quantity indirectly deduced from the Lie symmetry of the system is obtained. Lastly, an example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (Grant No 10372053) and the Natural Science Foundation of Henan Province, China (Grant No 0311011400). We are grateful for the instruction and help of Professor Mei F X, in Beijing Institute of Technology.
文摘The Mei symmetry of Tzénoff equations under the infinitesimal transformations of groups is studied in this paper. The definition and the criterion equations of the symmetry are given. If the symmetry is a Noether symmetry, then the Noether conserved quantity of the Tzénoff equations can be obtained by the Mei symmetry.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040007022).
文摘A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using the symmetry. An example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program of Suzhou University of Science and Technology,China(Grant No.SKYCX16 012)
文摘This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.
基金National Natural Science Foundation of China under Grant No.10672143
文摘Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tzénoffequations are given.Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given.Hojman conserved quantity of Tzénoff equations for the system above through special Lie symmetry and Lie symmetryin the condition of special Mei symmetry respectively is obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371293 and 11505090)the Natural Science Foundation of Shaanxi Province,China(Grant No.2014JM2-1009)+1 种基金the Research Award Foundation for Outstanding Young Scientists of Shandong Province,China(Grant No.BS2015SF009)the Science and Technology Innovation Foundation of Xi’an,China(Grant No.CYX1531WL41)
文摘We explore the (2+l)-dimensional dispersive long-wave (DLW) system. From the standard truncated Painleve expansion, the Baicklund transformation (BT) and residual symmetries of this system are derived. The introduction to an appropriate auxiliary dependent variable successfully localizes the residual symmetries to Lie point symmetries. In particular, it is verified that the (2+l)-dimensional DLW system is consistent Riccati expansion (CRE) solvable. If the special form of (CRE)-consistent tanh-function expansion (CTE) is taken, the soliton-cnoidal wave solutions and corresponding images can be explicitly given. Furthermore, the conservation laws of the DLW system are investigated with symmetries and Ibragimov theorem.
基金supported by the National Natural Science Foundation of China (Grant No.11072218)
文摘We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)the Fund for Fundamental Research of Beijing Institute of Technology (Grant No 20070742005)
文摘This paper discusses the symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates. Firstly, the definition and the criterion of the symmetry are given. Secondly, the condition under which there exists a conserved quantity and the form of the conserved quantity are obtained. Finally, an example is shown to illustrate the application of the results.
文摘Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are also obtained, An example is given to illustrate the application of the results.
文摘This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.
基金The project supported by the National Natural Science Foundation of China(10272021)
文摘In this paper, the definition and the criterion of a unified symmetry are presented. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are obtained. Some examples are given to illustrate the application of the results.
文摘This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10672143 and 10572021
文摘Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Scientific Research in Higher Education Institution of Jiangsu Province,China(Grant No.CXLX11 0961)the Innovation Program for Scientific Research of Suzhou University of Science and Technology,China(Grant No.SKCX12S 039)
文摘In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the Hamilton canonical equations with time delay are established. Secondly, according to the invariance of the function under the infinitesimal transformations of the group, the basic formulas for the variational of the Hamilton action with time delay are discussed, the definitions and the criteria of the Noether symmetric transformations and quasi-symmetric transformations with time delay are obtained, and the relationship between the Noether symmetry and the conserved quantity with time delay is studied. In addition, examples are given to illustrate the application of the results.