This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilt...This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.展开更多
Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tz...Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tzénoffequations are given.Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given.Hojman conserved quantity of Tzénoff equations for the system above through special Lie symmetry and Lie symmetryin the condition of special Mei symmetry respectively is obtained.展开更多
This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using ...A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using the symmetry. An example is given to illustrate the application of the result.展开更多
We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-elec...We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.展开更多
This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions o...This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.展开更多
This paper studies conformal invariance and conserved quantities of Hamilton system. The definition and the determining equation of conformal invariance for Hamilton system are provided. The relationship between the c...This paper studies conformal invariance and conserved quantities of Hamilton system. The definition and the determining equation of conformal invariance for Hamilton system are provided. The relationship between the conformal invariance and the Lie symmetry are discussed, and the necessary and sufficient condition that the conformal invariance would be the Lie symmetry of the system under the infinitesimal one-parameter transformation group is deduced. It gives the conserved quantities of the system and an example for illustration.展开更多
This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, ...This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.展开更多
In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the H...In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the Hamilton canonical equations with time delay are established. Secondly, according to the invariance of the function under the infinitesimal transformations of the group, the basic formulas for the variational of the Hamilton action with time delay are discussed, the definitions and the criteria of the Noether symmetric transformations and quasi-symmetric transformations with time delay are obtained, and the relationship between the Noether symmetry and the conserved quantity with time delay is studied. In addition, examples are given to illustrate the application of the results.展开更多
This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev non...This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.展开更多
This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equati...This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.展开更多
Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a ...Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results.展开更多
Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomi...Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
Nonlinear three-dimensional vibration of axially moving strings is investigated in the view of energetics. The governing equation is derived from the Eulerian equation of motion of a continuum for axially accelerating...Nonlinear three-dimensional vibration of axially moving strings is investigated in the view of energetics. The governing equation is derived from the Eulerian equation of motion of a continuum for axially accelerating strings. The time-rate of the total mechanical energy associated with the vibration is calculated for the string with its ends moving in a prescribed way. For a string moving in a constant axial speed and constrained by two fixed ends, a conserved quantity is proved to remain unchanged during three-dimensional vibration, while the string energy is not conserved. An approximate conserved quantity is derived from the conserved quantity in the neighborhood of the straight equilibrium configuration. The approximate conserved quantity is applied to verify the Lyapunov stability of the straight equilibrium configuration. Numerical simulations are performed for a rubber string and a steel string. The results demonstrate the variation of the total mechanical energy and the invariance of the conserved quantity.展开更多
Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which kee...Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.展开更多
Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass ...Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given.The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained.Finally,an example is given to illustrate the application of the results.展开更多
A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity ...A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system,...The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
A form invariance and a conserved quantity of the generalised Birkhoffian system are studied. First, a definition and a criterion of the form invariance are given. Secondly, through the form invariance, a new conserve...A form invariance and a conserved quantity of the generalised Birkhoffian system are studied. First, a definition and a criterion of the form invariance are given. Secondly, through the form invariance, a new conserved quantity can be deduced. Finally, an example is given to illustrate the application of the result.展开更多
This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and th...This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program of Suzhou University of Science and Technology,China(Grant No.SKYCX16 012)
文摘This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.
基金National Natural Science Foundation of China under Grant No.10672143
文摘Symmetry of Tzénoff equations for unilateral holonomic system under the infinitesimal transformationsof groups is investigated.Its definitions and discriminant equations of Mei symmetry and Lie symmetry of Tzénoffequations are given.Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given.Hojman conserved quantity of Tzénoff equations for the system above through special Lie symmetry and Lie symmetryin the condition of special Mei symmetry respectively is obtained.
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040007022).
文摘A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using the symmetry. An example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China (Grant No.11072218)
文摘We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.
文摘This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)
文摘This paper studies conformal invariance and conserved quantities of Hamilton system. The definition and the determining equation of conformal invariance for Hamilton system are provided. The relationship between the conformal invariance and the Lie symmetry are discussed, and the necessary and sufficient condition that the conformal invariance would be the Lie symmetry of the system under the infinitesimal one-parameter transformation group is deduced. It gives the conserved quantities of the system and an example for illustration.
文摘This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Scientific Research in Higher Education Institution of Jiangsu Province,China(Grant No.CXLX11 0961)the Innovation Program for Scientific Research of Suzhou University of Science and Technology,China(Grant No.SKCX12S 039)
文摘In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the Hamilton canonical equations with time delay are established. Secondly, according to the invariance of the function under the infinitesimal transformations of the group, the basic formulas for the variational of the Hamilton action with time delay are discussed, the definitions and the criteria of the Noether symmetric transformations and quasi-symmetric transformations with time delay are obtained, and the relationship between the Noether symmetry and the conserved quantity with time delay is studied. In addition, examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.
文摘Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金the National Natural Science Foundation of China (10472060)Research Grants Council of the Hong Kong Special Administrative Region (9041145)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (07ZZ07)Shanghai Leading Academic Discipline Project (Y0103)
文摘Nonlinear three-dimensional vibration of axially moving strings is investigated in the view of energetics. The governing equation is derived from the Eulerian equation of motion of a continuum for axially accelerating strings. The time-rate of the total mechanical energy associated with the vibration is calculated for the string with its ends moving in a prescribed way. For a string moving in a constant axial speed and constrained by two fixed ends, a conserved quantity is proved to remain unchanged during three-dimensional vibration, while the string energy is not conserved. An approximate conserved quantity is derived from the conserved quantity in the neighborhood of the straight equilibrium configuration. The approximate conserved quantity is applied to verify the Lyapunov stability of the straight equilibrium configuration. Numerical simulations are performed for a rubber string and a steel string. The results demonstrate the variation of the total mechanical energy and the invariance of the conserved quantity.
文摘Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given.The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained.Finally,an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University of China (Grant No. 2008LYY011)
文摘A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant No 10572021)the Preparatory Research Foundation of Jiangnan University,China(Grant No 2008LYY011)
文摘The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10772025,10932002)the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics
文摘A form invariance and a conserved quantity of the generalised Birkhoffian system are studied. First, a definition and a criterion of the form invariance are given. Secondly, through the form invariance, a new conserved quantity can be deduced. Finally, an example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.