A consistent tanh expansion (CTE) method is developed for the dispersion water wave (DWW) system. For the CTE solvable DlVVC system, there are two branches related to tanh expansion, the main branch is consistent ...A consistent tanh expansion (CTE) method is developed for the dispersion water wave (DWW) system. For the CTE solvable DlVVC system, there are two branches related to tanh expansion, the main branch is consistent while the auxiliary branch is not consistent. From the consistent branch, we can obtain infinitely many exact significant solutions including the soliton-resonant solutions and soliton-periodic wave interactions. From the inconsistent branch, only one special solution can be found. The CTE related nonlocal symmetries are also proposed. The nonlocai symmetries can be localized to find finite Backlund transformations by prolonging the model to an enlarged one.展开更多
The(1+1)-dimensional higher-order Broer–Kaup(HBK) system is studied by consistent tanh expansion(CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among...The(1+1)-dimensional higher-order Broer–Kaup(HBK) system is studied by consistent tanh expansion(CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among different nonlinear excitations such as solitons, rational waves, periodic waves, corresponding images are explicitly given.展开更多
The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explici...The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.展开更多
The consistent tanh expansion(CTE) method is employed to the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada(CDGKS) equation. The interaction solutions between solitons and the cnoidal periodic waves are explic...The consistent tanh expansion(CTE) method is employed to the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada(CDGKS) equation. The interaction solutions between solitons and the cnoidal periodic waves are explicitly obtained. Concretely, we discuss a special kind of interaction solution in the form of tanh functions and Jacobian elliptic functions in both analytical and graphical ways. The results show that the profiles of the soliton-cnoidal periodic wave interaction solutions can be designed by choosing different values of wave parameters.展开更多
The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary depen...The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.展开更多
The nonlocal symmetry is derived for an equation combining the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form from the truncated Painlevéexpansion method.The nonlocal symmetries a...The nonlocal symmetry is derived for an equation combining the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form from the truncated Painlevéexpansion method.The nonlocal symmetries are localized to the Lie point symmetry by introducing new auxiliary dependent variables.The finite symmetry transformation and the Lie point symmetry for the prolonged system are solved directly.Many new interaction solutions among soliton and other types of interaction solutions for the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form can be obtained from the consistent condition of the consistent tanh expansion method by selecting the proper arbitrary constants.展开更多
基金Supported by the National Natural Science Foundations of China under Grant Nos.11175092,11275123,11205092,and 10905038Talent FundK.C.Wong Magna Fund in Ningbo University
文摘A consistent tanh expansion (CTE) method is developed for the dispersion water wave (DWW) system. For the CTE solvable DlVVC system, there are two branches related to tanh expansion, the main branch is consistent while the auxiliary branch is not consistent. From the consistent branch, we can obtain infinitely many exact significant solutions including the soliton-resonant solutions and soliton-periodic wave interactions. From the inconsistent branch, only one special solution can be found. The CTE related nonlocal symmetries are also proposed. The nonlocai symmetries can be localized to find finite Backlund transformations by prolonging the model to an enlarged one.
基金Supported by National Natural Science Foundation of China under Grant Nos.11505090,11171041,11405103,11447220Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009
文摘The(1+1)-dimensional higher-order Broer–Kaup(HBK) system is studied by consistent tanh expansion(CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among different nonlinear excitations such as solitons, rational waves, periodic waves, corresponding images are explicitly given.
基金Supported by the National Natural Science Foundation of Zhejiang Province under Grant No.LZ15A050001the National Natural Science Foundation of China under Grant No.11675146
文摘The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.
基金Supported by the National Natural Science Foundation of China under Grant No.11505154the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ16A010003the Scientific Research Foundation for Doctoral Program of Zhejiang Ocean University under Grant No.Q1511
文摘The consistent tanh expansion(CTE) method is employed to the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada(CDGKS) equation. The interaction solutions between solitons and the cnoidal periodic waves are explicitly obtained. Concretely, we discuss a special kind of interaction solution in the form of tanh functions and Jacobian elliptic functions in both analytical and graphical ways. The results show that the profiles of the soliton-cnoidal periodic wave interaction solutions can be designed by choosing different values of wave parameters.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11305106,11275129 and 11405110the Natural Science Foundation of Zhejiang Province of China under Grant No.LQ13A050001
文摘The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.
基金supported by National Natural Science Foundation of China(No.11471215)Shanghai Natural Science Foundation(No.18ZR142600)。
文摘The nonlocal symmetry is derived for an equation combining the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form from the truncated Painlevéexpansion method.The nonlocal symmetries are localized to the Lie point symmetry by introducing new auxiliary dependent variables.The finite symmetry transformation and the Lie point symmetry for the prolonged system are solved directly.Many new interaction solutions among soliton and other types of interaction solutions for the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form can be obtained from the consistent condition of the consistent tanh expansion method by selecting the proper arbitrary constants.