In this paper, we consider the statistical analysis for the dependent competing risks model in theconstant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focusedon two competing risk...In this paper, we consider the statistical analysis for the dependent competing risks model in theconstant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focusedon two competing risks from Lomax distribution. The maximum likelihood estimators of theunknown parameters, the acceleration coefficients and the reliability of unit are obtained by usingthe Bivariate Pareto Copula function and the measure of dependence known as Kendall’s tau.In addition, the 95% confidence intervals as well as the coverage percentages are obtained byusing Bootstrap-p and Bootstrap-t method. Then, a simulation study is carried out by the MonteCarlo method for different measures of Kendall’s tau and different testing schemes. Finally, a realcompeting risks data is analysed for illustrative purposes. The results indicate that using copulafunction to deal with the dependent competing risks problems is effective and feasible.展开更多
基金This work is supported by the National Natural Science Foundation of China[grant number 71571144],[grant number 71401134],[grant number 71171164],[grant number 11701406]Natural Science Basic Research Program of Shaanxi Province[grant number 2015JM1003]Program of International Cooperation and Exchanges in Science and Technology Funded by Shaanxi Province[grant number 2016KW-033].
文摘In this paper, we consider the statistical analysis for the dependent competing risks model in theconstant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focusedon two competing risks from Lomax distribution. The maximum likelihood estimators of theunknown parameters, the acceleration coefficients and the reliability of unit are obtained by usingthe Bivariate Pareto Copula function and the measure of dependence known as Kendall’s tau.In addition, the 95% confidence intervals as well as the coverage percentages are obtained byusing Bootstrap-p and Bootstrap-t method. Then, a simulation study is carried out by the MonteCarlo method for different measures of Kendall’s tau and different testing schemes. Finally, a realcompeting risks data is analysed for illustrative purposes. The results indicate that using copulafunction to deal with the dependent competing risks problems is effective and feasible.