期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Constant angle surfaces constructed on curves
1
作者 王小六 潮小李 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期470-472,共3页
The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +s... The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface. 展开更多
关键词 ruled surface constant angle surface tangent surface normal surface binormal surface
下载PDF
Constant Angle Surfaces in the Heisenberg Group 被引量:2
2
作者 Johan FASTENAKELS Marian Ioan MUNTEANU Joeri VAN DER VEKEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第4期747-756,共10页
In this article we extend the notion of constant angle surfaces in S2 × R and H2 ×R to general Bianchi-Cartan-Vranceanu spaces. We show that these surfaces have constant Gaussian curvature and we give a comp... In this article we extend the notion of constant angle surfaces in S2 × R and H2 ×R to general Bianchi-Cartan-Vranceanu spaces. We show that these surfaces have constant Gaussian curvature and we give a complete local classification in the Heisenberg group. 展开更多
关键词 Heisenberg group Bianchi-Cartan Vranceanu space constant angle surface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部