Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved....An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved. These potentials were clarified with some experimental extraction-data reported before on the M = Ag(I), Ca(II), Sr(II) and Ba(II) extraction with 18-crown-6 ether (18C6) and benzo-18C6 into 1,2-dichloroethane (DCE) and nitrobenzene (NB). Consequently, it was demonstrated that the? values from the extraction-experimentally obtained logKD,Pic ones are in agreement with or close to those calculated from charge balance equations in many cases, where the symbol, KD,Pic, denotes an individual distribution constant of Pic﹣ into the DCE or NB phase. Also, it was experimentally shown that extraction constants based on the overall extraction equilibria do not virtually contain the? terms in their functional expressions.展开更多
Effects of meta-substituent of 3,4'/4,3'/3,3'-substituted benzylideneanilines (XBAYs) on the electrochemical reduction potentials (E(Red)) were investigated, in which 49 samples of target compounds were synth...Effects of meta-substituent of 3,4'/4,3'/3,3'-substituted benzylideneanilines (XBAYs) on the electrochemical reduction potentials (E(Red)) were investigated, in which 49 samples of target compounds were synthesized, and their reduction potentials were measured by cyclic voltammetry. The substituent effects on the E(Red) of target compounds were analyzed and an optimality equation with four parameters (Hammett constant a of X, Hammett constant a of Y, excited-state substituent constant σexCC of X, and the substituent specific cross-interaction effect △σexCC2 between X and Y) was obtained. The results show that the factors affecting the E(Red) of 3,4'/4,31/3,3P-substituted XBAYs are different from those of 4,4'-substituted XBAYs. For 3,4'/4,3'/3,3'-substituted XBAYs, σ(X) and σ(Y) must be employed, and the contribution of △σexCC2 is important and not negligible. Compared with 4,4'-substituted XBAYs, X group contributes less to 3,4'/4,3'/3,3'-substituted XBAYs, while Y group contributes more to them. Additionally, it was observed that either para-substituted XBAYs or meta-substituted XBAYs, the substituent effects of X are larger than those of Y on the E(Red) of substituted XBAYs.展开更多
Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are o...Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.展开更多
This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence intern...This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.展开更多
This paper applies the density functional theory method to optimise the structure for X3A state of TiO molecule with the basis sets 6-31G, 6-31++G and 6-311G^**. Comparing the attained results with the experiments...This paper applies the density functional theory method to optimise the structure for X3A state of TiO molecule with the basis sets 6-31G, 6-31++G and 6-311G^**. Comparing the attained results with the experiments, it obtains the conclusion that the basis set 6-31++G is most suitable for the optimal structure calculations of X3A state of TiO molecule. The whole potential energy curve for the electronic state is further scanned by using B3P86/6-31++G method for the ground state, then it uses a least square fitted to Murrell-Sorbie functions, at last it calculates the spectroscopic constants and force constants, which are in better agreement with the experimental data.展开更多
This paper applies the symmetry-aziapted-cluster/symmetry-adapted-cluster configuration-interaction (SAC/SACCI) method to optimize the structures for X^1∑^+, A^1 Ⅱ and C^1 ∑^- states of SiO molecule with the bas...This paper applies the symmetry-aziapted-cluster/symmetry-adapted-cluster configuration-interaction (SAC/SACCI) method to optimize the structures for X^1∑^+, A^1 Ⅱ and C^1 ∑^- states of SiO molecule with the basis sets D95++, 6-311++G and 6-311++G^**. Comparing the obtained results with the experiments, it gets the conclusion that the basis set 6-311++G^** is most suitable for the optimal structure calculations of X^1.∑^+, A^Ⅱ and C^1∑^- states of SiO molecule. The whole potential energy curves for these electronic states are further scanned by using SAC/6-311++G^** method for the ground state and SAC-CI/6-311++G^** method for the excited states, then use a least square method to fit Murrell^Sorbie functions, at last the spectroscopic constants and force constants are calculated, which are in good agreement with the experimental data.展开更多
A new method on constructing analytical potential energy functions is presented, and then a relatively universal analytical potential energy function for precisely calculating the spectra of 'iatomic molecules and io...A new method on constructing analytical potential energy functions is presented, and then a relatively universal analytical potential energy function for precisely calculating the spectra of 'iatomic molecules and ions is derived. Furthermore, six kinds of common potential energy curves containing three main potential curves i,e. steady state, metastable state and repulsive state are obtained from this potential energy function. Finally, spectroscopic parameters of thirteen diatomic molecules and ions including BeD-X^2∑+, BeT-X^2∑^+ and Na2-X^1∑g^+ etc are calculated by using the potential function, as a consequence, all calculation results are in good agreement with experimental data.展开更多
In this paper, a new method on constructing analytical potential energy functions is pre-sented, and from this a analytical potential en-ergy function applied to both neutral diatomic molecules and charged diatomic mo...In this paper, a new method on constructing analytical potential energy functions is pre-sented, and from this a analytical potential en-ergy function applied to both neutral diatomic molecules and charged diatomic molecular ions is obtained. This potential energy function in-cludes three dimensionless undetermined pa-rameters which can be determined uniquely by solving linear equations with the experimental spectroscopic parameters of molecules. The solutions of the dimensionless undetermined parameters are real numbers rather than com-plex numbers, this ensures that the analytical potential energy function has extensive uni-versality. Finally, the potential energy function is examined with four kinds of diatomic molecules or ions—homonuclear neutral diatomic mole-cule , and , homonuclear charged diatomic molecular ion , and , heter-nuclear neutral diatomic Molecule , and , heternuclear ch- arged diatomic Molecular ion , and ,as a conseque- nce, good results are obtained.展开更多
The embedded atom potentials for binary Ti V were developed and used to predict the mechanical properties of binary Ti V solid solutions with hcp and bcc structures including lattice parameters, elastic constants and ...The embedded atom potentials for binary Ti V were developed and used to predict the mechanical properties of binary Ti V solid solutions with hcp and bcc structures including lattice parameters, elastic constants and fracture toughness for Mode Ⅰ fracture under plane strain. The calculation results show that with the increment of V content, the lattice parameters and elastic constants decrease but the fracture toughness increases for hcp solid solutions, the lattice parameters decrease but the elastic constants and fracture toughness increase for bcc solid solutions. The calculation results agree well with the available experiment values. [展开更多
A novel scheme for potential energy functions of diatomic molecules is derived using a function with phase factors. Six kinds of potential curves of common shapes are obtained by adjusting the phase factors. Spectrosc...A novel scheme for potential energy functions of diatomic molecules is derived using a function with phase factors. Six kinds of potential curves of common shapes are obtained by adjusting the phase factors. Spectroscopic parameters of the ground states for ten kinds of molecules are calculated using the potential energy functions. The results agree well with experimental data.展开更多
A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration in...A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.展开更多
By using a function with a phase factor,a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtaine...By using a function with a phase factor,a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtained by adjusting the phase factor.The spectroscopic parameters of ten diatomic molecules are calculated by using the potential energy function;as a consequence,all calculation results are in good agreement with experimental data.展开更多
The potential energy curve (PEC) of BeF(X2Σ+) radical is investigated by using the complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted mult...The potential energy curve (PEC) of BeF(X2Σ+) radical is investigated by using the complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach over the internuclear separation range from 0.0522 to 2.0472 nm. The PEC is fitted to the analytic Murrell-Sorbie function, which is employed to accurately determine the spectroscopic parameters. The present D0, De, Re, ωe, ωeχe, αe and Be are 6.14 eV, 6.22 eV, 0.1372 nm, 1236.12 cm-1, 9.11 cm-1, 0.0175 cm-1 and 1.4651 cm-1, respectively. These parameters have been compared with those of previous investigations reported in the literature. With PEC determined at the present level of theory, a total of 75 vibrational states have been predicted for the first time by numerically solving the radial Schrdinger equation of nuclear motion using the Numerov method. For each vibrational state, the complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined for the first time. Comparing with the available experiments and other theories, we find that the present spectroscopic parameter and molecular constant results are more accurate and complete than the previous theoretical investigations.展开更多
A global potential energy surface(PES)of the ground state of SiH_(2)^(+) system is built by using neural network method based on 18223 ab initio points.The topographic properties of PES are presented and compared with...A global potential energy surface(PES)of the ground state of SiH_(2)^(+) system is built by using neural network method based on 18223 ab initio points.The topographic properties of PES are presented and compared with previous theoretical and experimental studies.The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data.In order to further verify the validity of the new PES,a test dynamics calculation of the Si^(+)+H_(2)(v_(0)=2,j_(0)=0)→H+SiH^(+)reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction.The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.展开更多
We consider a nonlinear Robin problem driven by the(p,q)-Laplacian plus an indefinite potential term and with a parametric reaction term.Under minimal conditions on the reaction function,which concern only its behavio...We consider a nonlinear Robin problem driven by the(p,q)-Laplacian plus an indefinite potential term and with a parametric reaction term.Under minimal conditions on the reaction function,which concern only its behavior near zero,we show that,for all λ>0 small,the problem has a nodal solution y_(λ)∈C^(1)(Ω)and we have y_(λ)→0 in C^(1)(Ω)asλ→0^(+).展开更多
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
文摘An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved. These potentials were clarified with some experimental extraction-data reported before on the M = Ag(I), Ca(II), Sr(II) and Ba(II) extraction with 18-crown-6 ether (18C6) and benzo-18C6 into 1,2-dichloroethane (DCE) and nitrobenzene (NB). Consequently, it was demonstrated that the? values from the extraction-experimentally obtained logKD,Pic ones are in agreement with or close to those calculated from charge balance equations in many cases, where the symbol, KD,Pic, denotes an individual distribution constant of Pic﹣ into the DCE or NB phase. Also, it was experimentally shown that extraction constants based on the overall extraction equilibria do not virtually contain the? terms in their functional expressions.
文摘Effects of meta-substituent of 3,4'/4,3'/3,3'-substituted benzylideneanilines (XBAYs) on the electrochemical reduction potentials (E(Red)) were investigated, in which 49 samples of target compounds were synthesized, and their reduction potentials were measured by cyclic voltammetry. The substituent effects on the E(Red) of target compounds were analyzed and an optimality equation with four parameters (Hammett constant a of X, Hammett constant a of Y, excited-state substituent constant σexCC of X, and the substituent specific cross-interaction effect △σexCC2 between X and Y) was obtained. The results show that the factors affecting the E(Red) of 3,4'/4,31/3,3P-substituted XBAYs are different from those of 4,4'-substituted XBAYs. For 3,4'/4,3'/3,3'-substituted XBAYs, σ(X) and σ(Y) must be employed, and the contribution of △σexCC2 is important and not negligible. Compared with 4,4'-substituted XBAYs, X group contributes less to 3,4'/4,3'/3,3'-substituted XBAYs, while Y group contributes more to them. Additionally, it was observed that either para-substituted XBAYs or meta-substituted XBAYs, the substituent effects of X are larger than those of Y on the E(Red) of substituted XBAYs.
基金This work was supported by the National Natural Science Foundation of China (No. 40274044).
文摘Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.
基金supported by the National Natural Science Foundation of China (Grant No. 10874064)the Program for Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008HASTIT008)
文摘This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.
基金supported by the Basic Research Program of Education Bureau of Henan Province,China (Grant No.2010A140008)the National Natural Science Foundation of China (Grant No.10774039)the Natural Science Foundation of Henan Province,China (Grant No.092300410249)
文摘This paper applies the density functional theory method to optimise the structure for X3A state of TiO molecule with the basis sets 6-31G, 6-31++G and 6-311G^**. Comparing the attained results with the experiments, it obtains the conclusion that the basis set 6-31++G is most suitable for the optimal structure calculations of X3A state of TiO molecule. The whole potential energy curve for the electronic state is further scanned by using B3P86/6-31++G method for the ground state, then it uses a least square fitted to Murrell-Sorbie functions, at last it calculates the spectroscopic constants and force constants, which are in better agreement with the experimental data.
基金Project supported by the Basic Research Program of Education Bureau of Henan Province of China (Grant No 2008A140006)
文摘This paper applies the symmetry-aziapted-cluster/symmetry-adapted-cluster configuration-interaction (SAC/SACCI) method to optimize the structures for X^1∑^+, A^1 Ⅱ and C^1 ∑^- states of SiO molecule with the basis sets D95++, 6-311++G and 6-311++G^**. Comparing the obtained results with the experiments, it gets the conclusion that the basis set 6-311++G^** is most suitable for the optimal structure calculations of X^1.∑^+, A^Ⅱ and C^1∑^- states of SiO molecule. The whole potential energy curves for these electronic states are further scanned by using SAC/6-311++G^** method for the ground state and SAC-CI/6-311++G^** method for the excited states, then use a least square method to fit Murrell^Sorbie functions, at last the spectroscopic constants and force constants are calculated, which are in good agreement with the experimental data.
基金the National Natural Science Foundation of China (40274044)
文摘A new method on constructing analytical potential energy functions is presented, and then a relatively universal analytical potential energy function for precisely calculating the spectra of 'iatomic molecules and ions is derived. Furthermore, six kinds of common potential energy curves containing three main potential curves i,e. steady state, metastable state and repulsive state are obtained from this potential energy function. Finally, spectroscopic parameters of thirteen diatomic molecules and ions including BeD-X^2∑+, BeT-X^2∑^+ and Na2-X^1∑g^+ etc are calculated by using the potential function, as a consequence, all calculation results are in good agreement with experimental data.
文摘In this paper, a new method on constructing analytical potential energy functions is pre-sented, and from this a analytical potential en-ergy function applied to both neutral diatomic molecules and charged diatomic molecular ions is obtained. This potential energy function in-cludes three dimensionless undetermined pa-rameters which can be determined uniquely by solving linear equations with the experimental spectroscopic parameters of molecules. The solutions of the dimensionless undetermined parameters are real numbers rather than com-plex numbers, this ensures that the analytical potential energy function has extensive uni-versality. Finally, the potential energy function is examined with four kinds of diatomic molecules or ions—homonuclear neutral diatomic mole-cule , and , homonuclear charged diatomic molecular ion , and , heter-nuclear neutral diatomic Molecule , and , heternuclear ch- arged diatomic Molecular ion , and ,as a conseque- nce, good results are obtained.
文摘The embedded atom potentials for binary Ti V were developed and used to predict the mechanical properties of binary Ti V solid solutions with hcp and bcc structures including lattice parameters, elastic constants and fracture toughness for Mode Ⅰ fracture under plane strain. The calculation results show that with the increment of V content, the lattice parameters and elastic constants decrease but the fracture toughness increases for hcp solid solutions, the lattice parameters decrease but the elastic constants and fracture toughness increase for bcc solid solutions. The calculation results agree well with the available experiment values. [
基金Project supported by the National Natural Science Foundation of China (Grant No.40274044)
文摘A novel scheme for potential energy functions of diatomic molecules is derived using a function with phase factors. Six kinds of potential curves of common shapes are obtained by adjusting the phase factors. Spectroscopic parameters of the ground states for ten kinds of molecules are calculated using the potential energy functions. The results agree well with experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)China Postdoctoral Science Foundation(Grant No.2014M561957)+1 种基金the Postdoctoral Innovation Project of Shandong Province,China(Grant No.201402013)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM022)
文摘A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.
基金This work was supported by the National Natural Science Foundation of China(No.40274044)
文摘By using a function with a phase factor,a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtained by adjusting the phase factor.The spectroscopic parameters of ten diatomic molecules are calculated by using the potential energy function;as a consequence,all calculation results are in good agreement with experimental data.
基金Supported by the National Natural Science Foundation of China (No. 10874064)the Natural Science Foundation of Henan Province (No. 2008A140008)the Key Teachers Foundation of Henan Province (No. 2008043)
文摘The potential energy curve (PEC) of BeF(X2Σ+) radical is investigated by using the complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach over the internuclear separation range from 0.0522 to 2.0472 nm. The PEC is fitted to the analytic Murrell-Sorbie function, which is employed to accurately determine the spectroscopic parameters. The present D0, De, Re, ωe, ωeχe, αe and Be are 6.14 eV, 6.22 eV, 0.1372 nm, 1236.12 cm-1, 9.11 cm-1, 0.0175 cm-1 and 1.4651 cm-1, respectively. These parameters have been compared with those of previous investigations reported in the literature. With PEC determined at the present level of theory, a total of 75 vibrational states have been predicted for the first time by numerically solving the radial Schrdinger equation of nuclear motion using the Numerov method. For each vibrational state, the complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined for the first time. Comparing with the available experiments and other theories, we find that the present spectroscopic parameter and molecular constant results are more accurate and complete than the previous theoretical investigations.
基金supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education,China(Grant No.JJKH20200482KJ)。
文摘A global potential energy surface(PES)of the ground state of SiH_(2)^(+) system is built by using neural network method based on 18223 ab initio points.The topographic properties of PES are presented and compared with previous theoretical and experimental studies.The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data.In order to further verify the validity of the new PES,a test dynamics calculation of the Si^(+)+H_(2)(v_(0)=2,j_(0)=0)→H+SiH^(+)reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction.The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.
基金supported by Piano della Ricerca di Ateneo 2020-2022-PIACERIProject MO.S.A.I.C"Monitoraggio satellitare,modellazioni matematiche e soluzioni architettoniche e urbane per lo studio,la previsione e la mitigazione delle isole di calore urbano",Project EEEP&DLaD.S。
文摘We consider a nonlinear Robin problem driven by the(p,q)-Laplacian plus an indefinite potential term and with a parametric reaction term.Under minimal conditions on the reaction function,which concern only its behavior near zero,we show that,for all λ>0 small,the problem has a nodal solution y_(λ)∈C^(1)(Ω)and we have y_(λ)→0 in C^(1)(Ω)asλ→0^(+).