期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Flow-Slip Stability Behavior of Calcareous Sand Treated by Microbially Induced Carbonate Precipitation Technology
1
作者 KOU Hailei HE Xiang +4 位作者 HOU Wangxiang LI Zhendong ZHANG Xixin AN Zhaotun LU Jiaqing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1381-1389,共9页
Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly m... Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly method for soil stabilization.This study investigates the effect of microbial treatments,initial relative density,initial cell pressure,and initial stress ratio on the flow-slip stability of calcareous sand specimens by using constant shear drained tests.These tests lay the foundation to study the mechanical instability of sand slopes.Results show that the microbial-treated specimens maintain stable stresses longer,take longer to reach the instability,and withstand larger volumetric strains.Microbial treatment effectively enhances sand stability under constant shear drainage,with improvements amplified by higher initial relative density and initial cell pressure.In addition,a smaller initial stress ratio reduces shear effects on the specimen and increases resistance to flow slides.Microanalysis reveals that the flow-slip stability of calcareous sand slopes is enhanced by contact cementation,particle coating,void filling,and mutual embedment of calcium carbonate crystals. 展开更多
关键词 clcareous sand microbially induced carbonate precipitation constant shear drained tests flow-slip stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部