The fluid-coupled discrete element method(DEM)and the constant volume method as two types of discrete modeling methods for fundamental study of undrained responses of granular materials,have been discussed by many res...The fluid-coupled discrete element method(DEM)and the constant volume method as two types of discrete modeling methods for fundamental study of undrained responses of granular materials,have been discussed by many researchers.The fluid-coupled DEM,which couples the motions of discrete particles with pore fluid movements,is theoretically robust although it requires a large amount of computation time.As a substitution for the complex fluid-coupled DEM,the constant volume method simulates an undrained condition for a saturated granular material by simply preserving the total volume of a granular assembly without considering interactions between fluids and particles;hence,the validity of its results is questionable.In this paper,the undrained behaviors of granular assemblies simulated using the aforementioned two methods are compared.Based on a comparison of both macroscopic and microscopic responses given by the two methods,it is demonstrated that the constant volume method may reasonably simulate the responses of a loose saturated granular material with very coarse grains,which has a high permeability,and thus a rapid pore pressure equalization.However,it is ineffective in simulating the responses of a loose material with fine components due to its failure to capture the process of a slow dissipation of the excess pore pressure among the individual pores.With regard to the dense material adopted,similar behaviors at the early and intermediate shearing stages given by the two methods are displayed.展开更多
基金The authors would like to express their acknowledgments to Dr.Timothy Topper for his insightful com。
文摘The fluid-coupled discrete element method(DEM)and the constant volume method as two types of discrete modeling methods for fundamental study of undrained responses of granular materials,have been discussed by many researchers.The fluid-coupled DEM,which couples the motions of discrete particles with pore fluid movements,is theoretically robust although it requires a large amount of computation time.As a substitution for the complex fluid-coupled DEM,the constant volume method simulates an undrained condition for a saturated granular material by simply preserving the total volume of a granular assembly without considering interactions between fluids and particles;hence,the validity of its results is questionable.In this paper,the undrained behaviors of granular assemblies simulated using the aforementioned two methods are compared.Based on a comparison of both macroscopic and microscopic responses given by the two methods,it is demonstrated that the constant volume method may reasonably simulate the responses of a loose saturated granular material with very coarse grains,which has a high permeability,and thus a rapid pore pressure equalization.However,it is ineffective in simulating the responses of a loose material with fine components due to its failure to capture the process of a slow dissipation of the excess pore pressure among the individual pores.With regard to the dense material adopted,similar behaviors at the early and intermediate shearing stages given by the two methods are displayed.