期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performances of fissured red sandstone after thermal treatment with constant-amplitude and low-cycle impacts
1
作者 Yongjun Chen Tubing Yin +3 位作者 P.G.Ranjith Xibing Li Qiang Li Dengdeng Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期561-587,共27页
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston... In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave. 展开更多
关键词 Red sandstone Temperature FISSURE constant-amplitude and low-cycle(CALC) impact fatigue failure Response surface method(RSM)
下载PDF
Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading 被引量:1
2
作者 宋玉普 曹伟 孟宪宏 《Journal of Shanghai University(English Edition)》 CAS 2005年第2期127-133,共7页
Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper st... Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures. 展开更多
关键词 CONCRETE triaxial constant-amplitude tension-compression cyclic loading fati gue strength fatigue life.
下载PDF
The Behavior of Rectangular and Circular Reinforced Concrete Columns Under Biaxial Multiple Excitation 被引量:2
3
作者 Mohammad Reza Salami Ebrahim Afsar Dizaj Mohammad Mehdi Kashani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期677-691,共15页
The aim of this study is to investigate the dynamic performance of rectangular and circular reinforced concrete(RC)columns considering biaxial multiple excitations.For this purpose,an advanced nonlinear finite element... The aim of this study is to investigate the dynamic performance of rectangular and circular reinforced concrete(RC)columns considering biaxial multiple excitations.For this purpose,an advanced nonlinear finite element model which can simulate various features of cyclic degradation in material and structural components is used.The implemented nonlinear fiber beam-column model accounts for inelastic buckling and low-cycle fatigue degradation of longitudinal reinforcement and can simulate multiple failure modes of RC columns under dynamic loading.Hypothetical rectangular and circular columns are used to investigate the failure modes of RC columns.A detailed ground motion selection is implemented to generate real mainshock and aftershocks.It was found that multiple excitations due to aftershock has the potential of increasing the damage of the RC columns and longitudinal reinforcements are significantly affected low-cycle fatigue.Also,it was found that rectangular column is more sensitive to accumulative damage due to cyclic fatigue.This study increases the accuracy of structural analysis of RC columns and consequently improves understanding the failure modes of RC columns with different cross-sectional shapes. 展开更多
关键词 RC COLUMN BIAXIAL loading MULTIPLE EXCITATIONS low-cycle fatigue
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部