[Objective] The research aimed to study construction and property of the constitutively desulfurization engineered strain. [Method] Des- ulfurization gene dszABC in Pseudomonas delafieldii R-8 strain was cloned into e...[Objective] The research aimed to study construction and property of the constitutively desulfurization engineered strain. [Method] Des- ulfurization gene dszABC in Pseudomonas delafieldii R-8 strain was cloned into expression vector pPR9TT with gap promoter to build a constitutive expression plasmid pRT-C. Then, pRT-C was reintroduced into R-8-0 strain to obtain constitutively engineered strain R-8-C. Moreover, its desulfu- rization property was studied. [ Result ] Strain R-8-C still had higher desulfurization activity in BSM medium with 0.10 mmol/L of Na2 SO4. Within 72 h, its desulfurization activity was 93% of the strain R-8 using DBT as the sole sulfur source, while control (strain R-8) nearly couldn't desulphate. When DBT was the sole sulfur source, in different growth periods, the desulfurization activity of strain R-8-C was all higher than that of the strain R-8. Within 24 h, its activity was 1.3 times of the strain R-8. [ Conclusion] These results were theoretically and technically helpful for understanding regulation mechanism of the desulfurization gene and constructing highly active desulphurization engineering strain.展开更多
基金Supported by Science and Technology Project,Jiangxi Department of Education,China (GJJ11142)
文摘[Objective] The research aimed to study construction and property of the constitutively desulfurization engineered strain. [Method] Des- ulfurization gene dszABC in Pseudomonas delafieldii R-8 strain was cloned into expression vector pPR9TT with gap promoter to build a constitutive expression plasmid pRT-C. Then, pRT-C was reintroduced into R-8-0 strain to obtain constitutively engineered strain R-8-C. Moreover, its desulfu- rization property was studied. [ Result ] Strain R-8-C still had higher desulfurization activity in BSM medium with 0.10 mmol/L of Na2 SO4. Within 72 h, its desulfurization activity was 93% of the strain R-8 using DBT as the sole sulfur source, while control (strain R-8) nearly couldn't desulphate. When DBT was the sole sulfur source, in different growth periods, the desulfurization activity of strain R-8-C was all higher than that of the strain R-8. Within 24 h, its activity was 1.3 times of the strain R-8. [ Conclusion] These results were theoretically and technically helpful for understanding regulation mechanism of the desulfurization gene and constructing highly active desulphurization engineering strain.