In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 t...In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 to 773 K and strain rates from 0.5 to 50 s?1 on a Gleeble?1500 thermo-simulation machine. Zener–Hollomon parameter in an exponent-type equation was used to describe the combined effects of temperature and strain rate on hot deformation behaviour of 6063 Al alloy, whereas the influence of strain was incorporated in the developed constitutive equation by considering material constants (α,n,Q andA) to be 4th order polynomial functions of strain. The results show that the developed constitutive equation can accurately predict high temperature flow stress of 6063 Al alloy, which demonstrates that it can be suitable for simulating hot deformation processes such as extrusion and forging, and for properly designing the deformation parameters in engineering practice.展开更多
The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The consti...The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The constitutive relations between flow stress and effective strain,effective strain rate as well as deformation temperature were studied.It can be concluded that the flow stress significantly reduces with the deformation temperature of IN690 superalloy increasing.Whereas,there is a significant increase of flow stress when the strain rate increases from 0.1 s^-1 to 10 s^-1.Based on the hyperbolic-sine Arrhenius-type equation,a constitutive equation considering compensation of strain was developed.The activation energy and the material constants(Q,n and ln A) decrease as the deformation strain increases.The strain dependent term is successfully incorporated in the constitutive equation through a quartic equation.A good agreement between the experimental data and the predicted results has been achieved,indicating that the proposed constitutive equation and the methods of determing the material constants are suitable to model the high temperature deformation behavior of IN690 superalloy.展开更多
To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their...To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their hot compression behavior was investigated at temperatures of 673−793 K and strain rates of 0.001−10 s−1;the microstructures were characterized by optical microscope,X-ray diffractometer,transmission electron microscope,and electron backscattered diffractometer,and the flow stresses were obtained by thermal compression simulator.Microstructural evolution and flow curves reveal that dynamic recovery is the dominant softening mechanism.Continuous dynamic recrystallization followed by dynamic grain growth takes place at a temperature of 773 K and a strain rate of 0.001 s−1;the yielding drop phenomenon was discovered.Hyperbolic sine constitutive equation incorporating dislocation variables was presented,and a power law constitutive equation was established.The stress exponent is 3.262,and the activation energy for deformation is 154.465 kJ/mol,indicating that dislocation viscous glide is the dominant deformation mechanism.展开更多
The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results i...The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.展开更多
Isothermal hot compression tests were carried out on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %, NZ30K) alloy using a Gleeble-3500 thermo-simulation machine at temperatures ranging from 350 to 500 ℃and strain rates fro...Isothermal hot compression tests were carried out on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %, NZ30K) alloy using a Gleeble-3500 thermo-simulation machine at temperatures ranging from 350 to 500 ℃and strain rates from 0.001 to 1 s^-1. A correction of flow stress for deformation heating at a high strain rate was carried out. Based on the corrected data for deformation heating, a hyperbolic sine constitutive equation was established. The constants in the constitutive equation of the hyperbolic sine form were determined as a function of strain. The flow stresses predicted by the developed equation agree well with the experimental results, which confirms that the developed constitutive equations can be used to predict the flow stress of NZ30K alloy during hot deformation.展开更多
Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compress...Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compression tests under axial strain rates ranging from 5×10-6 s-1 to 1×10-3 s-1.The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates.These strain rate-dependent mechanical behaviors of shale are originated from damage growth,which is described by a damage parameter.When axial strain is the same,the damage parameter is positively correlated with strain rate.When strain rate is the same,with an increase of axial strain,the damage parameter decreases firstly from an initial value(about 0.1 to 0.2),soon reaches its minimum(about 0.1),and then increases to an asymptotic value of 0.8.Based on the experimental results,taking yield stress as the cut-off point and considering damage variable evolution,a new measure of micro-mechanical strength is proposed.Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength,a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established.Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.展开更多
The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former st...The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former study and the convention triaxial pressure test results ,the complete procedures curves which described the relationships between yielding strength、 peak strength、 residual strength and confining pressure was obtained. Taking the strain softening of rock into account, the bilinear elastic-linear softening-residual perfect plasticity four-linear model was put forward in this paper on the basis of the test results and theory of plasticity. This model was adopted to describe the behaviors of marble in different phases under triaxial compression with the constitutive equation of strain softening phase as focus. The results indicated that the theoretic model fitted in well with the test results.展开更多
A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of te...A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.展开更多
为了探究单轴受压下石粉-钢渣混凝土的本构关系,根据正交试验方案配制了不同掺量钢渣砂(30%、40%、50%)、钢渣石(30%、40%、50%)、石粉(0%、7.5%、15%)的石粉-钢渣混凝土,对石粉-钢渣混凝土的应力-应变关系进行了实验研究,建立了单轴受...为了探究单轴受压下石粉-钢渣混凝土的本构关系,根据正交试验方案配制了不同掺量钢渣砂(30%、40%、50%)、钢渣石(30%、40%、50%)、石粉(0%、7.5%、15%)的石粉-钢渣混凝土,对石粉-钢渣混凝土的应力-应变关系进行了实验研究,建立了单轴受压下石粉-钢渣混凝土的本构关系模型。实验结果表明:当受到单轴压力时,石粉-钢渣混凝土的破坏模式与普通混凝土相似,表现出斜剪切的特征。石粉-钢渣混凝土峰值应力、峰值应变及弹性模量随着钢渣骨料掺量的增加而提高。为了更好地模拟无量纲应力-应变曲线,本工作采用了Carreira and Chu模型的上升段和过镇海模型的下降段进行了分段拟合。结果表明,实验曲线与分段模型曲线吻合较好。展开更多
基金Project(2012B090600051)supported by Al and Mg Light Alloys Platform on the Unity of Industry,Education and Research Innovation of Guangdong Province,ChinaProject(2012B001)supported by the Ph D Start-up Fund of Guangzhou Research Institute of Non-ferrous Metals,China
文摘In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 to 773 K and strain rates from 0.5 to 50 s?1 on a Gleeble?1500 thermo-simulation machine. Zener–Hollomon parameter in an exponent-type equation was used to describe the combined effects of temperature and strain rate on hot deformation behaviour of 6063 Al alloy, whereas the influence of strain was incorporated in the developed constitutive equation by considering material constants (α,n,Q andA) to be 4th order polynomial functions of strain. The results show that the developed constitutive equation can accurately predict high temperature flow stress of 6063 Al alloy, which demonstrates that it can be suitable for simulating hot deformation processes such as extrusion and forging, and for properly designing the deformation parameters in engineering practice.
基金support of the National Natural Science Foundation of China under Contract Number 50831008
文摘The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The constitutive relations between flow stress and effective strain,effective strain rate as well as deformation temperature were studied.It can be concluded that the flow stress significantly reduces with the deformation temperature of IN690 superalloy increasing.Whereas,there is a significant increase of flow stress when the strain rate increases from 0.1 s^-1 to 10 s^-1.Based on the hyperbolic-sine Arrhenius-type equation,a constitutive equation considering compensation of strain was developed.The activation energy and the material constants(Q,n and ln A) decrease as the deformation strain increases.The strain dependent term is successfully incorporated in the constitutive equation through a quartic equation.A good agreement between the experimental data and the predicted results has been achieved,indicating that the proposed constitutive equation and the methods of determing the material constants are suitable to model the high temperature deformation behavior of IN690 superalloy.
基金The authors are grateful for the financial support from the Key Project of the National Natural Science Foundation of China(51334006).
文摘To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their hot compression behavior was investigated at temperatures of 673−793 K and strain rates of 0.001−10 s−1;the microstructures were characterized by optical microscope,X-ray diffractometer,transmission electron microscope,and electron backscattered diffractometer,and the flow stresses were obtained by thermal compression simulator.Microstructural evolution and flow curves reveal that dynamic recovery is the dominant softening mechanism.Continuous dynamic recrystallization followed by dynamic grain growth takes place at a temperature of 773 K and a strain rate of 0.001 s−1;the yielding drop phenomenon was discovered.Hyperbolic sine constitutive equation incorporating dislocation variables was presented,and a power law constitutive equation was established.The stress exponent is 3.262,and the activation energy for deformation is 154.465 kJ/mol,indicating that dislocation viscous glide is the dominant deformation mechanism.
基金Supported by the Fund of Hunan Provincial Construction Department(No.06-468-8)
文摘The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.
基金Project (2009AA033501) supported by High-tech Research and Development Program of ChinaProject (08DZ1150302) supported by the Science and Technology Commission Foundation Program of Shanghai Municipality, ChinaProject (0911) supported by Shanghai Automotive Industry Science and Technology Development Foundation, China
文摘Isothermal hot compression tests were carried out on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %, NZ30K) alloy using a Gleeble-3500 thermo-simulation machine at temperatures ranging from 350 to 500 ℃and strain rates from 0.001 to 1 s^-1. A correction of flow stress for deformation heating at a high strain rate was carried out. Based on the corrected data for deformation heating, a hyperbolic sine constitutive equation was established. The constants in the constitutive equation of the hyperbolic sine form were determined as a function of strain. The flow stresses predicted by the developed equation agree well with the experimental results, which confirms that the developed constitutive equations can be used to predict the flow stress of NZ30K alloy during hot deformation.
基金financially supported by the China Scholarship Council projectthe National Natural Science Foundation of China(grants No.51574218,41688103,51678171,51608139,U1704243 and 51709113)+4 种基金the Guangdong Science and Technology Department(grant No.2015B020238014)the Guangzhou Science Technology and Innovation Commission(grant No.201604016021)the High-level Talent Research Launch Project(grant No.950318066)the Shandong Provincial Natural Science Foundation,China(grants No.ZR2017PD001 and ZR2018BD013)the Science Foundation of Chinese Academy of Geological Sciences(grant No.JYYWF20181201)
文摘Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compression tests under axial strain rates ranging from 5×10-6 s-1 to 1×10-3 s-1.The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates.These strain rate-dependent mechanical behaviors of shale are originated from damage growth,which is described by a damage parameter.When axial strain is the same,the damage parameter is positively correlated with strain rate.When strain rate is the same,with an increase of axial strain,the damage parameter decreases firstly from an initial value(about 0.1 to 0.2),soon reaches its minimum(about 0.1),and then increases to an asymptotic value of 0.8.Based on the experimental results,taking yield stress as the cut-off point and considering damage variable evolution,a new measure of micro-mechanical strength is proposed.Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength,a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established.Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.
文摘The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former study and the convention triaxial pressure test results ,the complete procedures curves which described the relationships between yielding strength、 peak strength、 residual strength and confining pressure was obtained. Taking the strain softening of rock into account, the bilinear elastic-linear softening-residual perfect plasticity four-linear model was put forward in this paper on the basis of the test results and theory of plasticity. This model was adopted to describe the behaviors of marble in different phases under triaxial compression with the constitutive equation of strain softening phase as focus. The results indicated that the theoretic model fitted in well with the test results.
文摘A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.
文摘为了探究单轴受压下石粉-钢渣混凝土的本构关系,根据正交试验方案配制了不同掺量钢渣砂(30%、40%、50%)、钢渣石(30%、40%、50%)、石粉(0%、7.5%、15%)的石粉-钢渣混凝土,对石粉-钢渣混凝土的应力-应变关系进行了实验研究,建立了单轴受压下石粉-钢渣混凝土的本构关系模型。实验结果表明:当受到单轴压力时,石粉-钢渣混凝土的破坏模式与普通混凝土相似,表现出斜剪切的特征。石粉-钢渣混凝土峰值应力、峰值应变及弹性模量随着钢渣骨料掺量的增加而提高。为了更好地模拟无量纲应力-应变曲线,本工作采用了Carreira and Chu模型的上升段和过镇海模型的下降段进行了分段拟合。结果表明,实验曲线与分段模型曲线吻合较好。