This paper proposes two unconstrained algorithms, the Steepest Decent (SD)algorithm and the Conjugate Gradient (CG) algorithm, based on a superexcellent cost function. At thesame time, two constrained algorithms which...This paper proposes two unconstrained algorithms, the Steepest Decent (SD)algorithm and the Conjugate Gradient (CG) algorithm, based on a superexcellent cost function. At thesame time, two constrained algorithms which include the Constrained Steepest Decent (CSD) algorithmand the Constrained Conjugate Gradient algorithm (CCG) are deduced subject to a new constraincondition. They are both implemented in unitary transform domain. The computational complexities ofthe constrained algorithms are compared to those of the unconstrained algorithms. Resultingsimulations show their performance comparisons.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm i...A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm is proved under the same conditions of usual trust region method.展开更多
This paper presents a trust region algorithm with null space technique fornonlinear equality constrained optimization. Considering in the null space methods that,the convergent rate of range space step is faster than ...This paper presents a trust region algorithm with null space technique fornonlinear equality constrained optimization. Considering in the null space methods that,the convergent rate of range space step is faster than the null space step for the most cases,the proposed algorithm computes null steps more often than range space step. Moreover,the new algorithm is based on the reduced Hessian SQP method. Global convergence ofthe proposed algorithm is proved. The effectiveness of the method is demonstrated bysome numerical examples.展开更多
In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component ...In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.展开更多
文摘This paper proposes two unconstrained algorithms, the Steepest Decent (SD)algorithm and the Conjugate Gradient (CG) algorithm, based on a superexcellent cost function. At thesame time, two constrained algorithms which include the Constrained Steepest Decent (CSD) algorithmand the Constrained Conjugate Gradient algorithm (CCG) are deduced subject to a new constraincondition. They are both implemented in unitary transform domain. The computational complexities ofthe constrained algorithms are compared to those of the unconstrained algorithms. Resultingsimulations show their performance comparisons.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
文摘A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm is proved under the same conditions of usual trust region method.
基金This research is partly supported by the Hunan Provincial Natural Science Foundtion of China and Hunan Provincial Education Foundation of China 02B021
文摘This paper presents a trust region algorithm with null space technique fornonlinear equality constrained optimization. Considering in the null space methods that,the convergent rate of range space step is faster than the null space step for the most cases,the proposed algorithm computes null steps more often than range space step. Moreover,the new algorithm is based on the reduced Hessian SQP method. Global convergence ofthe proposed algorithm is proved. The effectiveness of the method is demonstrated bysome numerical examples.
基金This research is supported in part by the National Natural Science Foundation of China(Grant No. 39830070,10171055)and China Postdoctoral Science Foundation
文摘In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.