An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an...An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.展开更多
为满足5.8 GHz雷达系统的需要,在HLMC55LP工艺中设计了一款12 bit SAR ADC,ADC的采样率为500 kHz/250 kHz两档可调,采用单调电容开关时序,且在电容阵列的高位部分加上2个冗余位设计,该冗余位对高位的CDAC建立误差,比较器误差都有一定的...为满足5.8 GHz雷达系统的需要,在HLMC55LP工艺中设计了一款12 bit SAR ADC,ADC的采样率为500 kHz/250 kHz两档可调,采用单调电容开关时序,且在电容阵列的高位部分加上2个冗余位设计,该冗余位对高位的CDAC建立误差,比较器误差都有一定的容忍能力,可以带来ADC性能上的提升。系统采用上极板采样,可以在采样周期结束的瞬间就开始逐位比较过程,省去了采用底极板采样第一拍CDAC建立的过程,提高了转换速度,相对于底极板采样也节省了一定的开关功耗。后仿结果表明,模拟输入20 kHz差分中频信号,在500 kHz采样频率,3.3 V电源电压下,ADC的有效位数为11.56 bit,SNR为71.04 dB,SFDR为80.37 dBc,功耗约为2 mW。展开更多
As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and incomplete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoreti...As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and incomplete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoretic tool to discretize the real function. As far as the real function research is concerned, the research to define rough sets in the real function is infrequent. In this paper, we exploit a new method to extend the rough set in normed linear space, in which we establish a rough set,put forward an upper and lower approximation definition, and make a preliminary research on the property of the rough set.A new tool is provided to study the approximation solutions of differential equation and functional variation in normed linear space. This research is significant in that it extends the application of rough sets to a new field.展开更多
In this paper, we derive an upper bound for the adiabatic approximation error, which is the distance between the exact solution to a Schrodinger equation and the adiabatic approximation solution. As an application, we...In this paper, we derive an upper bound for the adiabatic approximation error, which is the distance between the exact solution to a Schrodinger equation and the adiabatic approximation solution. As an application, we obtain an upper bound for 1 minus the fidelity of the exact solution and the adiabatic approximation solution to a SchrOdinger equation.展开更多
Based on a characterization of upper semi-Fredholm operators due to A.Lebow and M.Schechter,we introduce and investigate a new quantity characterizing upper semi-Fredholm operators.This quantity and several well-known...Based on a characterization of upper semi-Fredholm operators due to A.Lebow and M.Schechter,we introduce and investigate a new quantity characterizing upper semi-Fredholm operators.This quantity and several well-known quantities are used to characterize bounded compact approximation property.Similarly,a new quantity characterizing lower semi-Fredholm operators is introduced,investigated and used to characterize the bounded compact approximation property for dual spaces.展开更多
The classical adiabatic approximation theory gives an adiabatic approximate solution to the Schr6dinger equation (SE) by choosing a single eigenstate of the Hamiltonian as the initial state. The superposition princi...The classical adiabatic approximation theory gives an adiabatic approximate solution to the Schr6dinger equation (SE) by choosing a single eigenstate of the Hamiltonian as the initial state. The superposition principle of quantum states enables us to mathematically discuss the exact solution to the SE starting from a superposition of two different eigenstates of the time-dependent Hamiltonian H(0). Also, we can construct an approximate solution to the SE in terms of the corresponding instantaneous eigenstates of H(t). On the other hand, any physical experiment may bring errors so that the initial state (input state) may be a superposition of different eigenstates, not just at the desired eigenstate. In this paper, we consider the generalized adiabatic evolution of a quantum system starting from a superposition of two different eigenstates of the Hamiltonian at t = 0. A generalized adiabatic approximate solution (GAAS) is constructed and an upper bound for the generalized adiabatic approximation error is given. As an application, the fidelity of the exact solution and the GAAS is estimated.展开更多
文摘An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.
基金NationalNaturalScienceFoundationof China underGrant No .60173054
文摘As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and incomplete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoretic tool to discretize the real function. As far as the real function research is concerned, the research to define rough sets in the real function is infrequent. In this paper, we exploit a new method to extend the rough set in normed linear space, in which we establish a rough set,put forward an upper and lower approximation definition, and make a preliminary research on the property of the rough set.A new tool is provided to study the approximation solutions of differential equation and functional variation in normed linear space. This research is significant in that it extends the application of rough sets to a new field.
基金supported by the National Natural Science Fundation of China(Grant No.11171197)the Fundamental Research Funds for the Central Universities(Grant No.GK201301007)the Innovation Fund Project for Graduate Program of Shaanxi Normal University(Grant No.2013CXB012)
文摘In this paper, we derive an upper bound for the adiabatic approximation error, which is the distance between the exact solution to a Schrodinger equation and the adiabatic approximation solution. As an application, we obtain an upper bound for 1 minus the fidelity of the exact solution and the adiabatic approximation solution to a SchrOdinger equation.
基金supported by the National Natural Science Foundation of China(Grant No.11971403)the Natural Science Foundation of Fujian Province of China(Grant No.2019J01024)。
文摘Based on a characterization of upper semi-Fredholm operators due to A.Lebow and M.Schechter,we introduce and investigate a new quantity characterizing upper semi-Fredholm operators.This quantity and several well-known quantities are used to characterize bounded compact approximation property.Similarly,a new quantity characterizing lower semi-Fredholm operators is introduced,investigated and used to characterize the bounded compact approximation property for dual spaces.
基金supported by the National Natural Science Foundation of China(Grant Nos.11371012,11171197 and 11401359)the Innovation Fund Project for Graduate Program of Shaanxi Normal University(GrantNo.2013CXB012)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.GK201301007 and GK201404001)the Science Foundation of Weinan Normal University(Grant No.14YKS006)the Foundation of Mathematics Subject of Shaanxi Province(Grant No.14SXZD009)
文摘The classical adiabatic approximation theory gives an adiabatic approximate solution to the Schr6dinger equation (SE) by choosing a single eigenstate of the Hamiltonian as the initial state. The superposition principle of quantum states enables us to mathematically discuss the exact solution to the SE starting from a superposition of two different eigenstates of the time-dependent Hamiltonian H(0). Also, we can construct an approximate solution to the SE in terms of the corresponding instantaneous eigenstates of H(t). On the other hand, any physical experiment may bring errors so that the initial state (input state) may be a superposition of different eigenstates, not just at the desired eigenstate. In this paper, we consider the generalized adiabatic evolution of a quantum system starting from a superposition of two different eigenstates of the Hamiltonian at t = 0. A generalized adiabatic approximate solution (GAAS) is constructed and an upper bound for the generalized adiabatic approximation error is given. As an application, the fidelity of the exact solution and the GAAS is estimated.