-
题名基于约束性循环一致生成对抗网络的人脸表情识别方法
被引量:4
- 1
-
-
作者
胡敏
余胜男
王晓华
-
机构
合肥工业大学计算机与信息学院情感计算与先进智能机器安徽省重点实验室
-
出处
《电子测量与仪器学报》
CSCD
北大核心
2019年第4期169-177,共9页
-
基金
国家自然科学基金项目(61672202
61432004
+2 种基金
61502141)
国家自然科学基金-深圳联合基金重点项目(U1613217)
安徽高校省级自然科学研究重点项目(KJ2017A368)资助
-
文摘
深度神经网络在表情分类识别中会由于样本数量不均衡,样本相似度高出现过拟合,导致识别结果不理想,而通过旋转变换、添加噪声等数据增强方法不能解决相似度较高的问题。为此,对循环一致生成对抗网络(Cycle-GAN)进行改进,通过引入类别约束性条件,构建一种基于约束性循环一致生成对抗网络(CCycle-GAN),实现了一对多的数据类别映射,减少了模型训练开销;同时,为了提高人脸表情识别效率,对Cycle-GAN判别器进行改进,用一个辅助表情分类器替换循环一致生成对抗网络的判别器,不仅可以判断输入图像的真假,而且可以对表情进行分类。在CK+和FER2013数据集上的实验结果表明,该方法可以有效地解决神经网络中的过拟合和样本不均问题,提高了表情样本生成质量,进而提高了人脸表情识别率。
-
关键词
约束性循环一致生成对抗网络
数据增强
人脸表情识别
-
Keywords
constraint cycle-consistent generativeadversarial networks
data enhancement
facial expression recognition
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-