For the car sequencing(CS) problem, the draw-backs of the "sliding windows" technique used in the objective function have not been rectified, and no high quality initial solution has been acquired to accelerate th...For the car sequencing(CS) problem, the draw-backs of the "sliding windows" technique used in the objective function have not been rectified, and no high quality initial solution has been acquired to accelerate the improvement of the solution quality. Firstly, the objective function is improved to solve the double and bias counting of violations broadly discussed. Then, a new method combining heuristic with constraint propagation is proposed which constructs initial solutions under a parallel framework. Based on constraint propagation, three filtering rules are designed to intersecting with three greedy functions, so the variable domain is narrowed in the process of the construction. The parallel framework is served to show its robustness in terms of the quality of the solution since it greatly increases the performance of obtaining the best solution. In the computational experiments, 109 instances of 3 sets from the CSPLib' s benchmarks are used to test the performance of the proposed method. Experiment results show that the proposed method outperforms others in acquiring the best-known results for 85 best-known results of 109 are obtained with only one construction. The proposed research provides an avenue to remedy the deficiencies of "sliding windows" technique and construct high quality initial solutions.展开更多
Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the...Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the type of constraint was discussed. All its six types of transition sets are derived, in which three types are newly found and a method is proposed for analyzing the constrained bifurcation.展开更多
The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently de...The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of this interpreter showing how a problem modeled as such is typically solved.展开更多
In this paper, we propose a modified evolutionary programming with dynamic domain for solving nonlinear IP/MIP problems with linear constraints, without involving penalty function or any transformation for the problem...In this paper, we propose a modified evolutionary programming with dynamic domain for solving nonlinear IP/MIP problems with linear constraints, without involving penalty function or any transformation for the problem to a linear model or others. The numerical results show that the new algorithm gives a satisfactory performance in which it works of high speed, and accuracy in IP/MIP problems.展开更多
A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which i...A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.展开更多
This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in whi...This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.展开更多
In this article, we focus to study about modified objective function approach for multiobjective optimization problem with vanishing constraints. An equivalent η-approximated multiobjective optimization problem is co...In this article, we focus to study about modified objective function approach for multiobjective optimization problem with vanishing constraints. An equivalent η-approximated multiobjective optimization problem is constructed by a modification of the objective function in the original considered optimization problem. Furthermore, we discuss saddle point criteria for the aforesaid problem. Moreover, we present some examples to verify the established results.展开更多
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with ...Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.展开更多
We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary i...We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.展开更多
针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最...针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最大化客户满意度的多目标模型。根据模型的特点设计了改进的哈里斯鹰优化(improved Harris hawks optimization,IHHO)算法,随机地将种群中部分支配解作为父代解,用临时组合算子和4种交叉算子搜索新解。最后,算例测试结果表明,相较于传统的哈里斯鹰优化算法,IHHO算法的求解性能得到了有效改善,各操作算子中交叉算子2的求解效果最好。将IHHO算法用于实例中,求解结果得到了改善,充分验证了IHHO算法的有效性。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51435009,71302085)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ14E080002)K.C.Wong Magna Fund in Ningbo University
文摘For the car sequencing(CS) problem, the draw-backs of the "sliding windows" technique used in the objective function have not been rectified, and no high quality initial solution has been acquired to accelerate the improvement of the solution quality. Firstly, the objective function is improved to solve the double and bias counting of violations broadly discussed. Then, a new method combining heuristic with constraint propagation is proposed which constructs initial solutions under a parallel framework. Based on constraint propagation, three filtering rules are designed to intersecting with three greedy functions, so the variable domain is narrowed in the process of the construction. The parallel framework is served to show its robustness in terms of the quality of the solution since it greatly increases the performance of obtaining the best solution. In the computational experiments, 109 instances of 3 sets from the CSPLib' s benchmarks are used to test the performance of the proposed method. Experiment results show that the proposed method outperforms others in acquiring the best-known results for 85 best-known results of 109 are obtained with only one construction. The proposed research provides an avenue to remedy the deficiencies of "sliding windows" technique and construct high quality initial solutions.
文摘Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the type of constraint was discussed. All its six types of transition sets are derived, in which three types are newly found and a method is proposed for analyzing the constrained bifurcation.
基金This work was supported by Lebanese National Council for Scientific Research.
文摘The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of this interpreter showing how a problem modeled as such is typically solved.
基金This project was supported by the National Natural Science Foundation of China.
文摘In this paper, we propose a modified evolutionary programming with dynamic domain for solving nonlinear IP/MIP problems with linear constraints, without involving penalty function or any transformation for the problem to a linear model or others. The numerical results show that the new algorithm gives a satisfactory performance in which it works of high speed, and accuracy in IP/MIP problems.
文摘A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.
文摘This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.
基金financially supported by the CSIR,New Delhi,India through Grant no.:25(0266)/17/EMR-II
文摘In this article, we focus to study about modified objective function approach for multiobjective optimization problem with vanishing constraints. An equivalent η-approximated multiobjective optimization problem is constructed by a modification of the objective function in the original considered optimization problem. Furthermore, we discuss saddle point criteria for the aforesaid problem. Moreover, we present some examples to verify the established results.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
基金This paper is supported by High-Tech Research and Development Program of China (Grant No. 2003AA001048) Young Teacher Foundation of School of Electronics and Information Engineering of Xi'an Jiaotong Univeristy.
文摘Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.
文摘We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.
文摘针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最大化客户满意度的多目标模型。根据模型的特点设计了改进的哈里斯鹰优化(improved Harris hawks optimization,IHHO)算法,随机地将种群中部分支配解作为父代解,用临时组合算子和4种交叉算子搜索新解。最后,算例测试结果表明,相较于传统的哈里斯鹰优化算法,IHHO算法的求解性能得到了有效改善,各操作算子中交叉算子2的求解效果最好。将IHHO算法用于实例中,求解结果得到了改善,充分验证了IHHO算法的有效性。