Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supp...Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supply chains intensifies day by day,companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits.Excessive inventory(overstock)and stock outs are very significant issues for suppliers.Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory.Excess inventory can also lead to increased storage,insurance costs and labor as well as lower and degraded quality based on the nature of the product.Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store.If clients are unable to find the right products on the shelves,they may switch to another vendor or purchase alternative items.Demand forecasting is valuable for planning,scheduling and improving the coordination of all supply chain activities.This paper discusses the use of neural networks for seasonal time series forecasting.Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast.展开更多
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no...An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system.展开更多
To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financi...To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financial, economic, and investment sectors, few artificial intelligence-based research has tried to predict the auction values of real estate in the past. According to the objectives of this research, artificial intelligence and statistical methods will be used to create forecasting models for real estate auction prices. A multiple regression model and an artificial neural network are used in conjunction with one another to build the forecasting models. For the empirical study, the study utilizes data from Ghana apartment auctions from 2016 to 2020 to anticipate auction prices and evaluate the forecasting accuracy of the various models available at the time. Compared to the conventional Multiple Regression Analysis, using artificial intelligence systems for real estate appraisal is becoming a more viable option (MRA). The Artificial Neural network model exhibits the most outstanding performance, and efficient zonal segmentation based on the auction evaluation price enhances the model’s prediction accuracy even more. There is a statistically significant difference between the two models when it comes to forecasting the values of real estate auctions.展开更多
Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)...Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030.展开更多
In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, ...In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-I.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.展开更多
In order to use effectively renewable energy sources, we propose a new system, called Advanced Superconducting Power Conditioning System (ASPCS) that is composed of Superconducting Magnetic Energy Storage (SMES), Fuel...In order to use effectively renewable energy sources, we propose a new system, called Advanced Superconducting Power Conditioning System (ASPCS) that is composed of Superconducting Magnetic Energy Storage (SMES), Fuel Cell-Electrolyzer (FC-EL), hydrogen storage and DC/DC and DC/AC converters in connection with a liquid hydrogen station for fuel cell vehicles. The ASPCS compensates the fluctuating electric power of renewable energy sources such as wind and photovoltaic power generations by means of the SMES having characteristics of quick response and large Input-Output power, and hydrogen energy with FC-EL having characteristics of moderate response and large storage capacity. The moderate fluctuated power of the renewable energy is compensated by a trend forecasting method with the Artificial Neural Network. In case of excess of the power generation by the renewable energy to demand it is converted to hydrogen with EL. In contrast, shortage of the electric power is made up with FC. The faster fluctuation power that cannot be compensated by the forecasting method is effectively compensated by SMES. In the ASPCS, the SMES coil with an MgB2 conductor is operated at 20 K by using liquid hydrogen supplied from a liquid hydrogen tank of the fuel cell vehicle station. The necessary storage capacity of SMES is estimated as 50 MJ to 100 MJ depending on the forecasting time for compensating fluctuation power of the rated wind power generation of 5.0 MW. As a safety case, a thermosiphon cooling system is used to cool indirectly the MgB2 SMES coil by thermal conduction. In this paper, a trend forecasting result of output power of a wind power generation and the estimated storage capacity of SMES are reported.展开更多
For the purposes of this research, the optimal MLP neural network topology has been designed and tested by means the specific genetic algorithm multi-objective Pareto-Based. The objective of the research is to predict...For the purposes of this research, the optimal MLP neural network topology has been designed and tested by means the specific genetic algorithm multi-objective Pareto-Based. The objective of the research is to predict the trend of the ex-change rate Euro/USD up to three days ahead of last data available. The variable of output of the ANN designed is then the daily exchange rate Euro/Dollar and the frequency of data collection of variables of input and the output is daily. By the analysis of the data it is possible to conclude that the ANN model developed can largely predict the trend to three days of exchange rate Euro/USD.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
This paper focuses on ozone prediction in the atmosphere using a machine learning approach. We utilize air pollutant and meteorological variable datasets from the El Paso area to classify ozone levels as high or low. ...This paper focuses on ozone prediction in the atmosphere using a machine learning approach. We utilize air pollutant and meteorological variable datasets from the El Paso area to classify ozone levels as high or low. The LR and ANN algorithms are employed to train the datasets. The models demonstrate a remarkably high classification accuracy of 89.3% in predicting ozone levels on a given day. Evaluation metrics reveal that both the ANN and LR models exhibit accuracies of 89.3% and 88.4%, respectively. Additionally, the AUC values for both models are comparable, with the ANN achieving 95.4% and the LR obtaining 95.2%. The lower the cross-entropy loss (log loss), the higher the model’s accuracy or performance. Our ANN model yields a log loss of 3.74, while the LR model shows a log loss of 6.03. The prediction time for the ANN model is approximately 0.00 seconds, whereas the LR model takes 0.02 seconds. Our odds ratio analysis indicates that features such as “Solar radiation”, “Std. Dev. Wind Direction”, “outdoor temperature”, “dew point temperature”, and “PM10” contribute to high ozone levels in El Paso, Texas. Based on metrics such as accuracy, error rate, log loss, and prediction time, the ANN model proves to be faster and more suitable for ozone classification in the El Paso, Texas area.展开更多
This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods a...This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods are used to compare with the ANN combining method. The comparative experiment using real--world data shows that the prediction by the ANN method outperforms those by linear combining methods. The paper suggests that the ANN combining method can be used as- an alternative to conventional linear combining methods to achieve greater forecasting accuracy.展开更多
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin...Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.展开更多
Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling techniq...Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.展开更多
Forecast is very important for preventing and controlling the disaster of spontaneous combustion (sponcom). Gaseous products of coal, such as carbon monoxide, ethylene, propane and hydrogen, are commonly used as ind...Forecast is very important for preventing and controlling the disaster of spontaneous combustion (sponcom). Gaseous products of coal, such as carbon monoxide, ethylene, propane and hydrogen, are commonly used as indicators to reflect its status quo of sponcom in coal mines. Nevertheless, since the corresponding relationship between the temperature and the indicators is non-linear and can't be depicted with simple mathematical formula, it is very difficult to diagnose and forecast coal sponcom by monitoring indicator gases' distribution. A forward feeding 3-layer artificial neural network (ANN) model is employed to express the corresponding relation between temperature and index gases of coal sponcom more accurately. A large amount of data from programmed temperature oxidation experiments were employed to train the network to gain the connection strength between nerve cells and to accomplish the model. It proved in real coal productions that the ANN model can forecast coal sponcom accurately.展开更多
This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It presents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Us...This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It presents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corresponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.展开更多
This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks(ANN). It can support the designers in cost effectiveness, then help to control t...This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks(ANN). It can support the designers in cost effectiveness, then help to control the total cost. The method was used in the assembly cost estimation of the crucial parts of some railway stock products. As a comparison, we use the linear regression (LR) model in the same field. The result shows that ANN model performs better than the LR model in assembly cost estimation.展开更多
Because of overfitting and the improvement of generalization capability (GC)available in the construction of forecasting models using artificial neural network (ANN), a newmethod is proposed for model establishment by...Because of overfitting and the improvement of generalization capability (GC)available in the construction of forecasting models using artificial neural network (ANN), a newmethod is proposed for model establishment by means of making a low-dimension ANN learning matrixthrough principal component analysis (PCA). The results show that the PC A is able to construct anANN model without the need of finding an optimal structure with the appropriate number ofhidden-layer nodes, thus avoids overfitting by condensing forecasting information, reducingdimension and removing noise, and GC is greatly raised compared to the traditional ANN and stepwiseregression techniques for model establishment.展开更多
The objective of the research is to analyze the ability of the artificial neural network model developed to forecast the credit risk of a panel of Italian manufacturing companies. In a theoretical point of view, this ...The objective of the research is to analyze the ability of the artificial neural network model developed to forecast the credit risk of a panel of Italian manufacturing companies. In a theoretical point of view, this paper introduces a litera-ture review on the application of artificial intelligence systems for credit risk management. In an empirical point of view, this research compares the architecture of the artificial neural network model developed in this research to an-other one, built for a research conducted in 2004 with a similar panel of companies, showing the differences between the two neural network models.展开更多
Due to the low dispatchability of wind power,the massive integration of this energy source in power systems requires short-term and very short-term wind power output forecasting models to be as efficient and stable as...Due to the low dispatchability of wind power,the massive integration of this energy source in power systems requires short-term and very short-term wind power output forecasting models to be as efficient and stable as possible.A study is conducted in the present paper of potential improvements to the performance of artificial neural network(ANN)models in terms of efficiency and stability.Generally,current ANN models have been developed by considering exclusively the meteorological information of the wind farm reference station,in addition to selecting a fixed number of time periods prior to the forecasting.In this respect,new ANN models are proposed in this paper,which are developed by:varying the number of prior 1-h periods(periods prior to the forecasting hour)chosen for the input layer parameters;and/or incorporating in the input layer data from a second weather station in addition to the wind farm reference station.It has been found that the model performance is always improved when data from a second weather station are incorporated.The mean absolute relative error(MARE)of the new models is reduced by up to 7.5%.Furthermore,the longer the forecasting horizon,the greater the degree of improvement.展开更多
文摘Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supply chains intensifies day by day,companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits.Excessive inventory(overstock)and stock outs are very significant issues for suppliers.Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory.Excess inventory can also lead to increased storage,insurance costs and labor as well as lower and degraded quality based on the nature of the product.Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store.If clients are unable to find the right products on the shelves,they may switch to another vendor or purchase alternative items.Demand forecasting is valuable for planning,scheduling and improving the coordination of all supply chain activities.This paper discusses the use of neural networks for seasonal time series forecasting.Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast.
基金Supported by Foundation for University Key Teacher by Ministryof Education.
文摘An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system.
文摘To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financial, economic, and investment sectors, few artificial intelligence-based research has tried to predict the auction values of real estate in the past. According to the objectives of this research, artificial intelligence and statistical methods will be used to create forecasting models for real estate auction prices. A multiple regression model and an artificial neural network are used in conjunction with one another to build the forecasting models. For the empirical study, the study utilizes data from Ghana apartment auctions from 2016 to 2020 to anticipate auction prices and evaluate the forecasting accuracy of the various models available at the time. Compared to the conventional Multiple Regression Analysis, using artificial intelligence systems for real estate appraisal is becoming a more viable option (MRA). The Artificial Neural network model exhibits the most outstanding performance, and efficient zonal segmentation based on the auction evaluation price enhances the model’s prediction accuracy even more. There is a statistically significant difference between the two models when it comes to forecasting the values of real estate auctions.
基金the Ministry of Higher Education Malaysia,under the Fundamental Research Grant Scheme(FRGS Grant No.FRGS/1/2016/TK07/SEGI/02/1).
文摘Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030.
文摘In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-I.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.
文摘In order to use effectively renewable energy sources, we propose a new system, called Advanced Superconducting Power Conditioning System (ASPCS) that is composed of Superconducting Magnetic Energy Storage (SMES), Fuel Cell-Electrolyzer (FC-EL), hydrogen storage and DC/DC and DC/AC converters in connection with a liquid hydrogen station for fuel cell vehicles. The ASPCS compensates the fluctuating electric power of renewable energy sources such as wind and photovoltaic power generations by means of the SMES having characteristics of quick response and large Input-Output power, and hydrogen energy with FC-EL having characteristics of moderate response and large storage capacity. The moderate fluctuated power of the renewable energy is compensated by a trend forecasting method with the Artificial Neural Network. In case of excess of the power generation by the renewable energy to demand it is converted to hydrogen with EL. In contrast, shortage of the electric power is made up with FC. The faster fluctuation power that cannot be compensated by the forecasting method is effectively compensated by SMES. In the ASPCS, the SMES coil with an MgB2 conductor is operated at 20 K by using liquid hydrogen supplied from a liquid hydrogen tank of the fuel cell vehicle station. The necessary storage capacity of SMES is estimated as 50 MJ to 100 MJ depending on the forecasting time for compensating fluctuation power of the rated wind power generation of 5.0 MW. As a safety case, a thermosiphon cooling system is used to cool indirectly the MgB2 SMES coil by thermal conduction. In this paper, a trend forecasting result of output power of a wind power generation and the estimated storage capacity of SMES are reported.
文摘For the purposes of this research, the optimal MLP neural network topology has been designed and tested by means the specific genetic algorithm multi-objective Pareto-Based. The objective of the research is to predict the trend of the ex-change rate Euro/USD up to three days ahead of last data available. The variable of output of the ANN designed is then the daily exchange rate Euro/Dollar and the frequency of data collection of variables of input and the output is daily. By the analysis of the data it is possible to conclude that the ANN model developed can largely predict the trend to three days of exchange rate Euro/USD.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
文摘This paper focuses on ozone prediction in the atmosphere using a machine learning approach. We utilize air pollutant and meteorological variable datasets from the El Paso area to classify ozone levels as high or low. The LR and ANN algorithms are employed to train the datasets. The models demonstrate a remarkably high classification accuracy of 89.3% in predicting ozone levels on a given day. Evaluation metrics reveal that both the ANN and LR models exhibit accuracies of 89.3% and 88.4%, respectively. Additionally, the AUC values for both models are comparable, with the ANN achieving 95.4% and the LR obtaining 95.2%. The lower the cross-entropy loss (log loss), the higher the model’s accuracy or performance. Our ANN model yields a log loss of 3.74, while the LR model shows a log loss of 6.03. The prediction time for the ANN model is approximately 0.00 seconds, whereas the LR model takes 0.02 seconds. Our odds ratio analysis indicates that features such as “Solar radiation”, “Std. Dev. Wind Direction”, “outdoor temperature”, “dew point temperature”, and “PM10” contribute to high ozone levels in El Paso, Texas. Based on metrics such as accuracy, error rate, log loss, and prediction time, the ANN model proves to be faster and more suitable for ozone classification in the El Paso, Texas area.
文摘This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods are used to compare with the ANN combining method. The comparative experiment using real--world data shows that the prediction by the ANN method outperforms those by linear combining methods. The paper suggests that the ANN combining method can be used as- an alternative to conventional linear combining methods to achieve greater forecasting accuracy.
文摘Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.
文摘Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.
基金Supported by the National Natural Science Foundation of China (10972178)
文摘Forecast is very important for preventing and controlling the disaster of spontaneous combustion (sponcom). Gaseous products of coal, such as carbon monoxide, ethylene, propane and hydrogen, are commonly used as indicators to reflect its status quo of sponcom in coal mines. Nevertheless, since the corresponding relationship between the temperature and the indicators is non-linear and can't be depicted with simple mathematical formula, it is very difficult to diagnose and forecast coal sponcom by monitoring indicator gases' distribution. A forward feeding 3-layer artificial neural network (ANN) model is employed to express the corresponding relation between temperature and index gases of coal sponcom more accurately. A large amount of data from programmed temperature oxidation experiments were employed to train the network to gain the connection strength between nerve cells and to accomplish the model. It proved in real coal productions that the ANN model can forecast coal sponcom accurately.
文摘This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It presents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corresponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.
文摘This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks(ANN). It can support the designers in cost effectiveness, then help to control the total cost. The method was used in the assembly cost estimation of the crucial parts of some railway stock products. As a comparison, we use the linear regression (LR) model in the same field. The result shows that ANN model performs better than the LR model in assembly cost estimation.
基金This work is sponsored by the Ministry of Science and Technology of China Project "2004 DIB3J122"
文摘Because of overfitting and the improvement of generalization capability (GC)available in the construction of forecasting models using artificial neural network (ANN), a newmethod is proposed for model establishment by means of making a low-dimension ANN learning matrixthrough principal component analysis (PCA). The results show that the PC A is able to construct anANN model without the need of finding an optimal structure with the appropriate number ofhidden-layer nodes, thus avoids overfitting by condensing forecasting information, reducingdimension and removing noise, and GC is greatly raised compared to the traditional ANN and stepwiseregression techniques for model establishment.
文摘The objective of the research is to analyze the ability of the artificial neural network model developed to forecast the credit risk of a panel of Italian manufacturing companies. In a theoretical point of view, this paper introduces a litera-ture review on the application of artificial intelligence systems for credit risk management. In an empirical point of view, this research compares the architecture of the artificial neural network model developed in this research to an-other one, built for a research conducted in 2004 with a similar panel of companies, showing the differences between the two neural network models.
基金co-funded with ERDF fundsthe INTERREG MAC 2014-2020 programme,within the ENERMAC project(No.MAC/1.1a/117)。
文摘Due to the low dispatchability of wind power,the massive integration of this energy source in power systems requires short-term and very short-term wind power output forecasting models to be as efficient and stable as possible.A study is conducted in the present paper of potential improvements to the performance of artificial neural network(ANN)models in terms of efficiency and stability.Generally,current ANN models have been developed by considering exclusively the meteorological information of the wind farm reference station,in addition to selecting a fixed number of time periods prior to the forecasting.In this respect,new ANN models are proposed in this paper,which are developed by:varying the number of prior 1-h periods(periods prior to the forecasting hour)chosen for the input layer parameters;and/or incorporating in the input layer data from a second weather station in addition to the wind farm reference station.It has been found that the model performance is always improved when data from a second weather station are incorporated.The mean absolute relative error(MARE)of the new models is reduced by up to 7.5%.Furthermore,the longer the forecasting horizon,the greater the degree of improvement.