The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring test...The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process.展开更多
Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding ro...Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime.展开更多
A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for...A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.展开更多
It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analy...It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.展开更多
基金Projects(51408060,51208063)supported by the National Natural Science Foundation of China
文摘The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process.
基金supported by the National Natural Science Foundation of China(Nos.71631007 and 71771020)。
文摘Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime.
基金sponsored by projects (Grant Nos. 50978172, 51078318) of the National Natural Science Foundation of ChinaProject (Grant No. 10-0667) supposed by the New Century Excellent Talents in University
文摘A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.
基金Project(2000G033) supported by the S & T, Ministry of Railroad , China
文摘It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.