The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement e...The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils.展开更多
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art...To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.展开更多
The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and an...The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.展开更多
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)National Natural Science Foundation of China (No. 41171064) and (No. 41271072)
文摘The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils.
基金Projects(20120094110005,20120094130003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(51379068,51139001,51279052,51209077,51179066)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-11-0628)supported by the Program for New Century Excellent Talents in University,ChinaProjects(201201038,201101013)supported by the Public Welfare Industry Research Special Fund Project of Ministry of Water Resources of China
文摘To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.
基金Acknowledgement The authors of this paper thank the financial support from National Natural Science Foundation of China through project No.50478096.
文摘The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m.