One type of aerial cableway consists of a continuous cable,which works at the same time as carrying cable and drawing cable.This kind of cableway is supported by many towers,which divide the total length in linear sec...One type of aerial cableway consists of a continuous cable,which works at the same time as carrying cable and drawing cable.This kind of cableway is supported by many towers,which divide the total length in linear sections.Even small deviations from the planed layout can increase the strain of the cable and the danger of derailments.The deviations of the position of the towers from the planed layout are due to local sliding or sinking of the foundation or other mechanical movements.Up to now the axis of the cableways were periodically measured by traditional methods.The goal of this project is to demonstrate the possibility of measuring the axis of a cableway with GPS techniques,while the cable is moving.The results show that the proposed measuring device provides precise results in a simple and reliable way.展开更多
With the fast development of consumer-level RGB-D cameras, real-world indoor three-dimensional(3 D) scene modeling and robotic applications are gaining more attention. However, indoor 3 D scene modeling is still chall...With the fast development of consumer-level RGB-D cameras, real-world indoor three-dimensional(3 D) scene modeling and robotic applications are gaining more attention. However, indoor 3 D scene modeling is still challenging because the structure of interior objects may be complex and the RGB-D data acquired by consumer-level sensors may have poor quality. There is a lot of research in this area. In this survey, we provide an overview of recent advances in indoor scene modeling methods, public indoor datasets and libraries which can facilitate experiments and evaluations, and some typical applications using RGB-D devices including indoor localization and emergency evacuation.展开更多
文摘One type of aerial cableway consists of a continuous cable,which works at the same time as carrying cable and drawing cable.This kind of cableway is supported by many towers,which divide the total length in linear sections.Even small deviations from the planed layout can increase the strain of the cable and the danger of derailments.The deviations of the position of the towers from the planed layout are due to local sliding or sinking of the foundation or other mechanical movements.Up to now the axis of the cableways were periodically measured by traditional methods.The goal of this project is to demonstrate the possibility of measuring the axis of a cableway with GPS techniques,while the cable is moving.The results show that the proposed measuring device provides precise results in a simple and reliable way.
基金Project supported by the National Natural Science Foundation of China (Nos. 71901147, 41801392, 41901329, 41971354, and 41971341)the Research Program of Shenzhen S&T Innovation Committee,China (No. JCYJ20180305125131482)+5 种基金the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,MNR,China (Nos. KF-2019-04-010, KF-2019-04-014, and KF-2018-03-066)the Natural Science Foundation of Guangdong Province,China (Nos. 2019A1515010748 and 2019A1515011872)the Foundation of High-Level University Phase II,China (No. 000002110335)the Foundation of Shenzhen University for New Researchers,China (No. 2019056)the Innovation Team Program of Department Education of Guangdong Province,China (No. 2017KCXTD028)the Guangdong Science and Technology Strategic Innovation Fund (the Guangdong–Hong Kong–Macao Joint Laboratory Program)(No. 2020B1212030009)。
文摘With the fast development of consumer-level RGB-D cameras, real-world indoor three-dimensional(3 D) scene modeling and robotic applications are gaining more attention. However, indoor 3 D scene modeling is still challenging because the structure of interior objects may be complex and the RGB-D data acquired by consumer-level sensors may have poor quality. There is a lot of research in this area. In this survey, we provide an overview of recent advances in indoor scene modeling methods, public indoor datasets and libraries which can facilitate experiments and evaluations, and some typical applications using RGB-D devices including indoor localization and emergency evacuation.