当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究...当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。展开更多
研究比较差分自回归移动平均模型(Autoregressive Integrated Moving Average model,简称ARIMA)与长短期记忆神经网络(Long Short Term Memory,LSTM)模型在建筑安全事故预测中的效果。采用2012—2018年全国建筑安全事故快报数据训练ARIM...研究比较差分自回归移动平均模型(Autoregressive Integrated Moving Average model,简称ARIMA)与长短期记忆神经网络(Long Short Term Memory,LSTM)模型在建筑安全事故预测中的效果。采用2012—2018年全国建筑安全事故快报数据训练ARIMA及LSTM模型,并对全国每年、每月发生的建筑安全事故次数进行预测,使用RMSE和MAE作为评价指标对比两种模型的预测准确率。ARIMA(1,1,0)模型和LSTM模型的RMSE、MAE值分别为8.1318、6.5911和16.4341、14.5534。结果表明,ARIMA模型比LSTM模型更适于预测建筑安全事故发生次数。展开更多
文摘当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。
文摘研究比较差分自回归移动平均模型(Autoregressive Integrated Moving Average model,简称ARIMA)与长短期记忆神经网络(Long Short Term Memory,LSTM)模型在建筑安全事故预测中的效果。采用2012—2018年全国建筑安全事故快报数据训练ARIMA及LSTM模型,并对全国每年、每月发生的建筑安全事故次数进行预测,使用RMSE和MAE作为评价指标对比两种模型的预测准确率。ARIMA(1,1,0)模型和LSTM模型的RMSE、MAE值分别为8.1318、6.5911和16.4341、14.5534。结果表明,ARIMA模型比LSTM模型更适于预测建筑安全事故发生次数。