期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Engineer Nanoscale Defects into Selective Channels:MOF-Enhanced Li^(+) Separation by Porous Layered Double Hydroxide Membrane 被引量:1
1
作者 Yahua Lu Rongkun Zhou +5 位作者 Naixin Wang Yuye Yang Zilong Zheng Miao Zhang Quan-Fu An Jiayin Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期325-336,共12页
Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivit... Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivity and permeability for ion separation applications.Zeolitic imidazolate framework functionalized modified layered double hydroxide(ZIF-8@MLDH)composite membranes with high lithium-ion(Li^(+)) permeability and excellent operational stability were obtained in this work by in situ depositing functional ZIF-8 nanoparticles into the nanopores acting as framework defects in MLDH membranes.The defect-rich framework amplified the permeability of Li^(+),and the site-selective growth of ZIF-8 in the framework defects bettered its selectivity.Specifically speaking,the ZIF-8@MLDH membranes featured a high permeation rate of Li^(+) up to 1.73 mol m^(−2) h^(−1) and a desirable selectiv-ity of Li^(+)/Mg^(2+) up to 31.9.Simulations supported that the simultaneously enhanced selectivity and permeability of Li+are attributed to changes in the type of mass transfer channels and the difference in the dehydration capacity of hydrated metal cations when they pass through nanochannels of ZIF-8.This study will inspire the ongoing research of high-performance 2D membranes through the engineering of defects. 展开更多
关键词 Nanoscale defect construction Nanoparticles restrict growth Two-dimensional composite membrane Lithium-ion extraction High stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部