In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A...In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.展开更多
Edutainment,in the kindergarten education stage,emphasizes the game as the basic activity and combines the content of education with the form of the game,thus it also forms the educational method of gamification teach...Edutainment,in the kindergarten education stage,emphasizes the game as the basic activity and combines the content of education with the form of the game,thus it also forms the educational method of gamification teaching.Through investigation and analysis,it is found that the current kindergarten game activity design has the problem of improper combination of educational content and game form.The current kindergarten game activity design has problems such as stereotypes,children’s lack of active learning opportunities in activities,teachers’insufficient theoretical understanding,inappropriate teacher guidance methods,and so on.Embodied cognition theory attaches importance to the important role of the body in the development of cognition,provides new guidance for classroom teaching,and opens up a new path for classroom teaching reform.Based on the perspective of embodied cognition theory,the concept of body and mind integration should be adhered to in kindergarten teaching with games as the basic activity,experiential teaching situation should be created,children’s subjective experience should be respected,and games and interactions should be designed to promote children’s physical and mental participation,thus laying a foundation for the realization of children’s individual freedom,autonomy,and all-round development.Therefore,this paper aims at the existing problems in the current kindergarten gamification teaching and discusses the design strategy of children’s game activities based on embodied cognition theory.展开更多
The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent bu...The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent but partially overlap.The dopaminergic system acts on the anterior brain and is responsible for executive function,working memory,and planning.In contrast,the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function.Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson’s disease.Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections.However,whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated.Furthermore,the precise role of the cerebellum in patients with Parkinson’s disease and cognitive impairment remains unclear.Therefore,in this review,we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition,as reported by previous studies,and investigated the role of the cerebellum in patients with Parkinson’s disease and cognitive impairment,as determined by functional neuroimaging.Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson’s disease.展开更多
Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s dis...Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.展开更多
Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function....Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.展开更多
SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study...SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study,the role of SIL1 in APP processing was explored both in vitro and in vivo.In the in vitro experiment,SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695.In the in vivo experiment,AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates.Western blotting(WB),immunohistochemistry,RNA sequencing(RNA-seq),and behavioral experiments were performed to evaluate the relevant parameters.Results indicated that SIL1 expression decreased in APP23/PS45 mice.Overexpression of SIL1 significantly decreased the protein levels of APP,presenilin-1(PS1),and C-terminal fragments(CTFs)of APP in vivo and in vitro.Conversely,knockdown of SIL1 increased the protein levels of APP,β-site APP cleavage enzyme 1(BACE1),PS1,and CTFs,as well as APP mRNA expression in 2EB2 cells.Furthermore,SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice.Importantly,Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice.These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.展开更多
Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation...Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.展开更多
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and...Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and AD.However,previous studies have mainly used handcrafted features to classify MCI,AD,and normal control(NC)individuals.This paper focuses on using gray matter(GM)scans obtained through magnetic resonance imaging(MRI)for the diagnosis of individuals with MCI,AD,and NC.To improve classification performance,we developed two transfer learning strategies with data augmentation(i.e.,shear range,rotation,zoom range,channel shift).The first approach is a deep Siamese network(DSN),and the second approach involves using a cross-domain strategy with customized VGG-16.We performed experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset to evaluate the performance of our proposed models.Our experimental results demonstrate superior performance in classifying the three binary classification tasks:NC vs.AD,NC vs.MCI,and MCI vs.AD.Specifically,we achieved a classification accuracy of 97.68%,94.25%,and 92.18%for the three cases,respectively.Our study proposes two transfer learning strategies with data augmentation to accurately diagnose MCI,AD,and normal control individuals using GM scans.Our findings provide promising results for future research and clinical applications in the early detection and diagnosis of AD.展开更多
BACKGROUND Chemotherapy for malignant tumors can cause brain changes and cognitive impairment,leading to chemotherapy-induced cognitive impairment(CICI).Current research on CICI has focused on breast cancer and Hodgki...BACKGROUND Chemotherapy for malignant tumors can cause brain changes and cognitive impairment,leading to chemotherapy-induced cognitive impairment(CICI).Current research on CICI has focused on breast cancer and Hodgkin’s lymphoma.Whether patients with non-Hodgkin’s lymphoma(NHL)undergoing chemo-therapy have cognitive impairment has not been fully investigated.therapy have cognitive impairment has not been fully investigated.AIM To investigate whether NHL patients undergoing chemotherapy had cognitive impairments.METHODS The study included 100 NHL patients who were required to complete a compre-hensive psychological scale including the Brief Psychiatric Examination Scale(MMSE)at two time points:before chemotherapy and within 2 wk of two chemo-therapy courses.A language proficiency test(VFT),Symbol Number Pattern Test(SDMT),Clock Drawing Test(CDT),Abbreviated Daily Cognition Scale(ECog-12),Prospective and Retrospective Memory Questionnaire,and Karnofsky Perfor-mance Status were used to assess cognitive changes before and after chemo-therapy.RESULTS The VFT scores for before treatment(BT)and after treatment(AT)groups were 45.20±15.62,and 42.30±17.53,respectively(t-2.16,P<0.05).The CDT scores were 8(3.5-9.25)for BT and 7(2.5-9)for AT groups(Z-2.1,P<0.05).Retrospective memory scores were 13.5(9-17)for BT and 15(13-18)for AT(Z-3.7,P<0.01).The prospective memory scores were 12.63±3.61 for BT and 14.43±4.32 for AT groups(t-4.97,P<0.01).The ECog-12 scores were 1.71(1.25-2.08)for BT and 1.79(1.42-2.08)for AT groups(Z-2.84,P<0.01).The SDMT and MMSE values did not show a significant difference between BT and AT groups.CONCLUSION Compared to the AT group,the BT group showed impaired language,memory,and subjective cognition,but objec-tive cognition and execution were not significantly affected.展开更多
Objective: Some studies have investigated the association between oral microbiome and mild cognitive impairment (MCI). However, there needs to be more narrative reviews synthesizing this evidence. This study aimed to ...Objective: Some studies have investigated the association between oral microbiome and mild cognitive impairment (MCI). However, there needs to be more narrative reviews synthesizing this evidence. This study aimed to bridge this gap in the current knowledge. Methods: A comprehensive search was conducted on PubMed (MEDLINE) to identify studies examining the association between the oral microbiome and MCI. Search parameters and inclusion criteria were clearly defined, encompassing terms related to the oral microbiome, MCI, and their association. Two authors independently selected relevant studies and performed data extraction. Result: Four studies were included. Two cohort studies and two case-control reported an association between the oral microbiome and MCI. Conclusion: Based on the evidence synthesized from the included studies, the review suggests an association between MCI and the oral microbiome. Specifically, all included studies identified significant differences in the abundance of specific microbial species between individuals with MCI and those with normal cognitive function, underscoring the potential role of these species in neuroinflammatory diseases.展开更多
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects a...Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects and potential for dependency. This study investigates the effects of a natural supplement combination of Ginkgo Biloba and Acai Extract on cognitive symptoms in a 77-year-old male with PD. The participant underwent a three-month supplementation regimen, with cognitive function assessed using the Montreal Cognitive Assessment (MoCA) test before and after the intervention. The results indicated an improvement in cognitive scores, suggesting that the combination of Ginkgo Biloba and Acai Extract may offer a promising alternative or adjunct to conventional PD treatments. This study highlights the potential of natural supplements in managing PD symptoms and calls for further research with larger sample sizes to confirm these findings. Human data was performed in accordance with the Declaration of Helsinki by the Roxbury District IRB Board (IRB Number: IRB00011767).展开更多
Objective:To study the application of the Montessori education method in cognitive training in patients with Alzheimer’s disease(AD).Methods:40 cases of senile dementia patients who were admitted to our hospital from...Objective:To study the application of the Montessori education method in cognitive training in patients with Alzheimer’s disease(AD).Methods:40 cases of senile dementia patients who were admitted to our hospital from January 2022 to January 2023 were selected and randomly divided into an intervention group and a control group according to the single and double number table method,with 20 cases in each group.The intervention group used the Montessori education method,the principle of which was to implement individualized health interventions based on the individual conditions of the patients,for a period of 6 months;the control group was given conventional treatment and nursing of the disease.The Mini-Mental State Examination(MMSE)was used to compare the effects of the two groups of patients before and after health intervention and conduct statistical analysis.Results:The score of the intervention group was higher than that of the control group,and there was a statistical difference between the two(P<0.05).Conclusion:Implementing the Montessori education method for diagnosed Alzheimer’s patients can effectively improve their cognitive function and delay the progress of further dementia.展开更多
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclea...Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease.展开更多
Speech disorders are a common type of childhood disease.Through experimental intervention,this study aims to improve the vocabulary comprehension levels and language ability of children with speech disorders through t...Speech disorders are a common type of childhood disease.Through experimental intervention,this study aims to improve the vocabulary comprehension levels and language ability of children with speech disorders through the language cognition and emotional speech community method.We also conduct a statistical analysis of the inter-ventional effect.Among children with speech disorders in Dongguan City,224 were selected and grouped accord-ing to their receptive language ability and IQ.The 112 children in the experimental group(EG)received speech therapy with language cognitive and emotional speech community,while the 112 children in the control group(CG)only received conventional treatment.After six months of experimental intervention,the Peabody Picture Vocabulary Test-Revised(PPVT-R)was used to test the language ability of the two groups.Overall,we employed a quantitative approach to obtain numerical values,examine the variables identified,and test hypotheses.Further-more,we used descriptive statistics to explore the research questions related to the study and statistically describe the overall distribution of the demographic variables.The statistical t-test was used to analyze the data.The data shows that after intervention through language cognition and emotional speech community therapy,the PPVT-R score of the EG was significantly higher than that of the CG.Therefore,we conclude that there is a significant difference in language ability between the EG and CG after the therapy.Although both groups improved,the post-therapy language level of EG is significantly higher than that of CG.The total effective rate in EG is higher than CG,and the difference is statistically significant(p<0.05).Therefore,we conclude that the language cogni-tion and emotional speech community method is effective as an interventional treatment of children’s speech dis-orders and that it is more effective than traditional treatment methods.展开更多
Mild cognitive impairment(MCI)is a prodrome of Alzheimer’s disease pathology.Cognitive impairment patients often have a delayed diagnosis because there are no early symptoms or conventional diagnostic methods.Exosome...Mild cognitive impairment(MCI)is a prodrome of Alzheimer’s disease pathology.Cognitive impairment patients often have a delayed diagnosis because there are no early symptoms or conventional diagnostic methods.Exosomes play a vital role in cell-to-cell communications and can act as promising biomarkers in diagnosing diseases.This study was designed to identify serum exosomal candidate proteins that may play roles in diagnosing MCI.Mass spectrometry coupled with tandem mass tag approach-based non-targeted proteomics was used to show the differentially expressed proteins in exosomes between MCI patients and healthy controls,and these differential proteins were validated using immunoblot and enzyme-linked immunosorbent assays.Correlation of cognitive performance with the serum exosomal protein level was determined.Nanoparticle tracking analysis suggested that there was a higher serum exosome concentration and smaller exosome diameter in individuals with MCI compared with healthy controls.We identified 69 exosomal proteins that were differentially expressed between MCI patients and healthy controls using mass spectrometry analysis.Thirty-nine exosomal proteins were upregulated in MCI patients compared with those in control patients.Exosomal fibulin-1,with an area under the curve value of 0.81,may be a biomarker for an MCI diagnosis.The exosomal protein signature from MCI patients reflected the cell adhesion molecule category.In particular,higher exosomal fibulin-1 levels correlated with lower cognitive performance.Thus,this study revealed that exosomal fibulin-1 is a promising biomarker for diagnosing MCI.展开更多
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relations...Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson’s disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson’s disease. We then established a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson’s disease.展开更多
Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular me...Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular mechanisms remain unclear.In this study,amyloid precursor protein/presenilin 1(APP/PS1)double transgenic mice were used as a model of Alzheimer’s disease.Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months.The cognitive functions of animals were assessed using Morris water maze.Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay.The cell damage in the brain was investigated using hematoxylin and eosin staining.The levels of amyloid-βand the concentrations of interleukin-1β,interleukin-6 and tumor necrosis factor-αin the brain were measured using enzyme-linked immunosorbent assay.Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction.We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice;alleviated damage to synapses and nerve cells in the brain;and reduced amyloid-βlevels,tau protein hyperphosphorylation,and inflammatory responses.High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer’s disease-related neuropathologies may have been mediated by the regulation of Ptgds,Cd74,Map3k1,Fosb,and Spp1 expression in the brain.These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer’s disease.Furthermore,these data indicate that LTG may be a promising therapeutic drug for Alzheimer’s disease.展开更多
Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neur...Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.展开更多
基金supported by STI2030-Major Projects,No.2021ZD 0201801(to JG)Shanxi Province Basic Research Program,No.20210302123429(to QS).
文摘In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.
文摘Edutainment,in the kindergarten education stage,emphasizes the game as the basic activity and combines the content of education with the form of the game,thus it also forms the educational method of gamification teaching.Through investigation and analysis,it is found that the current kindergarten game activity design has the problem of improper combination of educational content and game form.The current kindergarten game activity design has problems such as stereotypes,children’s lack of active learning opportunities in activities,teachers’insufficient theoretical understanding,inappropriate teacher guidance methods,and so on.Embodied cognition theory attaches importance to the important role of the body in the development of cognition,provides new guidance for classroom teaching,and opens up a new path for classroom teaching reform.Based on the perspective of embodied cognition theory,the concept of body and mind integration should be adhered to in kindergarten teaching with games as the basic activity,experiential teaching situation should be created,children’s subjective experience should be respected,and games and interactions should be designed to promote children’s physical and mental participation,thus laying a foundation for the realization of children’s individual freedom,autonomy,and all-round development.Therefore,this paper aims at the existing problems in the current kindergarten gamification teaching and discusses the design strategy of children’s game activities based on embodied cognition theory.
基金supported by the National Natural Science Foundation of China,No.82071419Key Research and Development Program of Guangzhou,No.202206010086+1 种基金High-level Hospital Construction Project,No.DFJH201907Supporting Research Funds for Outstanding Young Medical Talents in Guangdong Province,No.KJ012019442(all to YZ)。
文摘The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent but partially overlap.The dopaminergic system acts on the anterior brain and is responsible for executive function,working memory,and planning.In contrast,the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function.Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson’s disease.Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections.However,whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated.Furthermore,the precise role of the cerebellum in patients with Parkinson’s disease and cognitive impairment remains unclear.Therefore,in this review,we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition,as reported by previous studies,and investigated the role of the cerebellum in patients with Parkinson’s disease and cognitive impairment,as determined by functional neuroimaging.Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson’s disease.
基金supported in parts by the National Natural Science Foundation of China,Nos.82101501(to QF),and 82201589(to XH)。
文摘Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.
基金supported by grant PID2021-125875OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by"ERDF A way of making Europe"(to RL)supported by a grant from Junta de Comunidades de Castilla-La Mancha (SBPLY/21/180501/000064)+3 种基金Universidad de Castilla-La Mancha (2023-GRIN-34187)(to RL).Grant PID201 9-104921RB-I00/MCI/AEI/10.13039/501100011033 (to AGO)the Foundation for Applied Medical Research,the University of Navarra (Pamplona,Spain)for financial supporthe Asociación de Amigos of the University of Navarra for the grant (to SB)Margarita Salas fellowship from Ministerio de Universidades and Universidad de Castilla-La Mancha (to AMB)
文摘Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.
基金National Natural Science Foundation of China(82230043,82293642)。
文摘SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study,the role of SIL1 in APP processing was explored both in vitro and in vivo.In the in vitro experiment,SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695.In the in vivo experiment,AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates.Western blotting(WB),immunohistochemistry,RNA sequencing(RNA-seq),and behavioral experiments were performed to evaluate the relevant parameters.Results indicated that SIL1 expression decreased in APP23/PS45 mice.Overexpression of SIL1 significantly decreased the protein levels of APP,presenilin-1(PS1),and C-terminal fragments(CTFs)of APP in vivo and in vitro.Conversely,knockdown of SIL1 increased the protein levels of APP,β-site APP cleavage enzyme 1(BACE1),PS1,and CTFs,as well as APP mRNA expression in 2EB2 cells.Furthermore,SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice.Importantly,Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice.These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.
基金National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+2 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Heye Health Technology Chong Ming Project(HYCMP2021010)CASHIPS Director’s Fund(BJPY2021A06)。
文摘Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金Research work funded by Zhejiang Normal University Research Fund YS304023947 and YS304023948.
文摘Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and AD.However,previous studies have mainly used handcrafted features to classify MCI,AD,and normal control(NC)individuals.This paper focuses on using gray matter(GM)scans obtained through magnetic resonance imaging(MRI)for the diagnosis of individuals with MCI,AD,and NC.To improve classification performance,we developed two transfer learning strategies with data augmentation(i.e.,shear range,rotation,zoom range,channel shift).The first approach is a deep Siamese network(DSN),and the second approach involves using a cross-domain strategy with customized VGG-16.We performed experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset to evaluate the performance of our proposed models.Our experimental results demonstrate superior performance in classifying the three binary classification tasks:NC vs.AD,NC vs.MCI,and MCI vs.AD.Specifically,we achieved a classification accuracy of 97.68%,94.25%,and 92.18%for the three cases,respectively.Our study proposes two transfer learning strategies with data augmentation to accurately diagnose MCI,AD,and normal control individuals using GM scans.Our findings provide promising results for future research and clinical applications in the early detection and diagnosis of AD.
文摘BACKGROUND Chemotherapy for malignant tumors can cause brain changes and cognitive impairment,leading to chemotherapy-induced cognitive impairment(CICI).Current research on CICI has focused on breast cancer and Hodgkin’s lymphoma.Whether patients with non-Hodgkin’s lymphoma(NHL)undergoing chemo-therapy have cognitive impairment has not been fully investigated.therapy have cognitive impairment has not been fully investigated.AIM To investigate whether NHL patients undergoing chemotherapy had cognitive impairments.METHODS The study included 100 NHL patients who were required to complete a compre-hensive psychological scale including the Brief Psychiatric Examination Scale(MMSE)at two time points:before chemotherapy and within 2 wk of two chemo-therapy courses.A language proficiency test(VFT),Symbol Number Pattern Test(SDMT),Clock Drawing Test(CDT),Abbreviated Daily Cognition Scale(ECog-12),Prospective and Retrospective Memory Questionnaire,and Karnofsky Perfor-mance Status were used to assess cognitive changes before and after chemo-therapy.RESULTS The VFT scores for before treatment(BT)and after treatment(AT)groups were 45.20±15.62,and 42.30±17.53,respectively(t-2.16,P<0.05).The CDT scores were 8(3.5-9.25)for BT and 7(2.5-9)for AT groups(Z-2.1,P<0.05).Retrospective memory scores were 13.5(9-17)for BT and 15(13-18)for AT(Z-3.7,P<0.01).The prospective memory scores were 12.63±3.61 for BT and 14.43±4.32 for AT groups(t-4.97,P<0.01).The ECog-12 scores were 1.71(1.25-2.08)for BT and 1.79(1.42-2.08)for AT groups(Z-2.84,P<0.01).The SDMT and MMSE values did not show a significant difference between BT and AT groups.CONCLUSION Compared to the AT group,the BT group showed impaired language,memory,and subjective cognition,but objec-tive cognition and execution were not significantly affected.
文摘Objective: Some studies have investigated the association between oral microbiome and mild cognitive impairment (MCI). However, there needs to be more narrative reviews synthesizing this evidence. This study aimed to bridge this gap in the current knowledge. Methods: A comprehensive search was conducted on PubMed (MEDLINE) to identify studies examining the association between the oral microbiome and MCI. Search parameters and inclusion criteria were clearly defined, encompassing terms related to the oral microbiome, MCI, and their association. Two authors independently selected relevant studies and performed data extraction. Result: Four studies were included. Two cohort studies and two case-control reported an association between the oral microbiome and MCI. Conclusion: Based on the evidence synthesized from the included studies, the review suggests an association between MCI and the oral microbiome. Specifically, all included studies identified significant differences in the abundance of specific microbial species between individuals with MCI and those with normal cognitive function, underscoring the potential role of these species in neuroinflammatory diseases.
文摘Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects and potential for dependency. This study investigates the effects of a natural supplement combination of Ginkgo Biloba and Acai Extract on cognitive symptoms in a 77-year-old male with PD. The participant underwent a three-month supplementation regimen, with cognitive function assessed using the Montreal Cognitive Assessment (MoCA) test before and after the intervention. The results indicated an improvement in cognitive scores, suggesting that the combination of Ginkgo Biloba and Acai Extract may offer a promising alternative or adjunct to conventional PD treatments. This study highlights the potential of natural supplements in managing PD symptoms and calls for further research with larger sample sizes to confirm these findings. Human data was performed in accordance with the Declaration of Helsinki by the Roxbury District IRB Board (IRB Number: IRB00011767).
文摘Objective:To study the application of the Montessori education method in cognitive training in patients with Alzheimer’s disease(AD).Methods:40 cases of senile dementia patients who were admitted to our hospital from January 2022 to January 2023 were selected and randomly divided into an intervention group and a control group according to the single and double number table method,with 20 cases in each group.The intervention group used the Montessori education method,the principle of which was to implement individualized health interventions based on the individual conditions of the patients,for a period of 6 months;the control group was given conventional treatment and nursing of the disease.The Mini-Mental State Examination(MMSE)was used to compare the effects of the two groups of patients before and after health intervention and conduct statistical analysis.Results:The score of the intervention group was higher than that of the control group,and there was a statistical difference between the two(P<0.05).Conclusion:Implementing the Montessori education method for diagnosed Alzheimer’s patients can effectively improve their cognitive function and delay the progress of further dementia.
基金supported by grants from the National Natural Science Foundation of China,Nos. 81771216 (to JLP), 81520108010 (to BRZ),and 82101323 (to TS)the National Key R&D Program of China,No. 2018YFA0701400 (to HYL)+3 种基金the Primary Research and Development Plan of Zhejiang Province,No. 2020C03020 (to BRZ)the Key Project of Zhejiang Laboratory,No. 2018EB0ZX01 (to HYL)the Fundamental Research Funds for the Central Universities,No. 2019XZZX001-01-21 (to HYL)Preferred Foundation of Zhejiang Postdoctors,No. ZJ2021152 (to TS)。
文摘Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease.
文摘Speech disorders are a common type of childhood disease.Through experimental intervention,this study aims to improve the vocabulary comprehension levels and language ability of children with speech disorders through the language cognition and emotional speech community method.We also conduct a statistical analysis of the inter-ventional effect.Among children with speech disorders in Dongguan City,224 were selected and grouped accord-ing to their receptive language ability and IQ.The 112 children in the experimental group(EG)received speech therapy with language cognitive and emotional speech community,while the 112 children in the control group(CG)only received conventional treatment.After six months of experimental intervention,the Peabody Picture Vocabulary Test-Revised(PPVT-R)was used to test the language ability of the two groups.Overall,we employed a quantitative approach to obtain numerical values,examine the variables identified,and test hypotheses.Further-more,we used descriptive statistics to explore the research questions related to the study and statistically describe the overall distribution of the demographic variables.The statistical t-test was used to analyze the data.The data shows that after intervention through language cognition and emotional speech community therapy,the PPVT-R score of the EG was significantly higher than that of the CG.Therefore,we conclude that there is a significant difference in language ability between the EG and CG after the therapy.Although both groups improved,the post-therapy language level of EG is significantly higher than that of CG.The total effective rate in EG is higher than CG,and the difference is statistically significant(p<0.05).Therefore,we conclude that the language cogni-tion and emotional speech community method is effective as an interventional treatment of children’s speech dis-orders and that it is more effective than traditional treatment methods.
基金supported by the National Natural Science Foundation of China,No.81801071(to YJL)Top-notch Postgraduate Talent Cultivation Program of Chongqing Medical University,No.BJRC202106(to BC).
文摘Mild cognitive impairment(MCI)is a prodrome of Alzheimer’s disease pathology.Cognitive impairment patients often have a delayed diagnosis because there are no early symptoms or conventional diagnostic methods.Exosomes play a vital role in cell-to-cell communications and can act as promising biomarkers in diagnosing diseases.This study was designed to identify serum exosomal candidate proteins that may play roles in diagnosing MCI.Mass spectrometry coupled with tandem mass tag approach-based non-targeted proteomics was used to show the differentially expressed proteins in exosomes between MCI patients and healthy controls,and these differential proteins were validated using immunoblot and enzyme-linked immunosorbent assays.Correlation of cognitive performance with the serum exosomal protein level was determined.Nanoparticle tracking analysis suggested that there was a higher serum exosome concentration and smaller exosome diameter in individuals with MCI compared with healthy controls.We identified 69 exosomal proteins that were differentially expressed between MCI patients and healthy controls using mass spectrometry analysis.Thirty-nine exosomal proteins were upregulated in MCI patients compared with those in control patients.Exosomal fibulin-1,with an area under the curve value of 0.81,may be a biomarker for an MCI diagnosis.The exosomal protein signature from MCI patients reflected the cell adhesion molecule category.In particular,higher exosomal fibulin-1 levels correlated with lower cognitive performance.Thus,this study revealed that exosomal fibulin-1 is a promising biomarker for diagnosing MCI.
基金supported by the National Natural Science Foundation of China,Nos. 81971006 (to DSG), 82101263 (to CXT)Jiangsu Province Science Foundation for Youths,No. BK20210903 (to CXT)+2 种基金Research Foundation for Talented Scholars of Xuzhou Medical University,No. RC20552114 (to CXT)Science&Technology Program of Xuzhou,No. KC19016 (to JC)Project of Xuzhou Medical University,No. 2018KJ06 (to JC)。
文摘Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson’s disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson’s disease. We then established a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson’s disease.
基金supported by the National Natural Science Foundation of China, No. 81771140 (to YDZ)the Natural Science Foundation of Jiangsu Province of China, No. BK20201117 (to YDZ)Jiangsu “Six One Project” for Distinguished Medical Scholars of China, No. LGY2020013 (to TJ)
文摘Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular mechanisms remain unclear.In this study,amyloid precursor protein/presenilin 1(APP/PS1)double transgenic mice were used as a model of Alzheimer’s disease.Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months.The cognitive functions of animals were assessed using Morris water maze.Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay.The cell damage in the brain was investigated using hematoxylin and eosin staining.The levels of amyloid-βand the concentrations of interleukin-1β,interleukin-6 and tumor necrosis factor-αin the brain were measured using enzyme-linked immunosorbent assay.Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction.We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice;alleviated damage to synapses and nerve cells in the brain;and reduced amyloid-βlevels,tau protein hyperphosphorylation,and inflammatory responses.High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer’s disease-related neuropathologies may have been mediated by the regulation of Ptgds,Cd74,Map3k1,Fosb,and Spp1 expression in the brain.These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer’s disease.Furthermore,these data indicate that LTG may be a promising therapeutic drug for Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China,No.82101493(to JY)。
文摘Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.