A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability...A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability conditions are obtained,and by using nonlinear analysis, the time-dependent Ginzburg-Landau(TDGL) equation and the modified Korteweg-de Vries(mKdV) equation are derived. Furthermore, the connection between TDGL and mKdV equations is also given. The numerical simulation is consistent with the theoretical analysis. The evolution of a traffic jam and the corresponding energy consumption are explored. The numerical results show that the control scheme is effective not only to suppress the traffic jam but also to reduce the energy consumption.展开更多
Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by us...Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by using Back Propagation(BP)neural network to solve nonlinear problems and have the ability of global approximation and generalization.By analyzing the influence of different uses,different building surfaces and different energysaving schemes on the change of building energy consumption,the grey correlation method is used to determine the main influencing factors affecting each building energy consumption,including uses,building surfaces and energy-saving schemes,which are used as the input of the model and the building energy consumption as the output of the model,so as to establish the building energy consumption analysis model based on BP neural network.However,in practical application,BP neural network has the defects of slow convergence and easy to fall into local minima.In view of this,this paper uses genetic algorithm to optimize the weight and threshold of BP neural network,completes the improvement of various building energy consumption analysis models,and realizes the qualitative analysis of building energy consumption.The model verification results show that the viscosity of the building energy consumption analysis model based on genetic algorithm improved BP neural network algorithm(GABP)in this paper is relatively high,which is more accurate than the results of the traditional BP neural network model,and the relative error of the analysis model is reduced from 11.56%to 8.13%,which proves that the GABP can be better suitable for the study of school building energy consumption analysis model,It is applied to the prediction of building energy consumption,which lays a foundation for the realization of carbon neutralization in the South expansion plan of Yangtze University.展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
Energy efficiency is very important for the Internet of Things(IoT),especially for front-end sensed terminal or node.It not only embodies the node’s life,but also reflects the lifetime of the network.Meanwhile,it is ...Energy efficiency is very important for the Internet of Things(IoT),especially for front-end sensed terminal or node.It not only embodies the node’s life,but also reflects the lifetime of the network.Meanwhile,it is also a key indicator of green communications.Unfortunately,there is no article on systematic analysis and review for energy efficiency evaluation in IoT.In this paper,we systemically analyze the architecture of IoT,and point out its energy distribution,Furthermore,we summarized the energy consumption model in IoT,analyzed the pros and cons of improving energy efficiency,presented a state of the art the evaluation metrics of energy efficiency.Finally,we conclude the techniques and methods,and carry out a few open research issues and directions in this field.展开更多
Novel enabling technologies from physical layer to Medium Access Control (MAC) layer are proposed to provide energy efficient Radio-over-Fiber (RoF) Distributed Antenna System (DAS) based Wireless Sensor Networks (WSN...Novel enabling technologies from physical layer to Medium Access Control (MAC) layer are proposed to provide energy efficient Radio-over-Fiber (RoF) Distributed Antenna System (DAS) based Wireless Sensor Networks (WSN). The power consumption performance of the network is evaluated in terms of the total network power consumption based on the proposed power consumption models from the physical layer. The results illustrate that for a given power consumption value, the tradeoff among the number of Remote Access Units (RAUs), the number of Multiple-Input Multiple-Output (MIMO) antennas and the number of hops must be taken into account. In order to efficiently reduce the total network power consumption, we also proposed a solution from the MAC layer using a sleep-aware MAC protocol, which can dynamically centralized control MIMO antennas to operate in a sleep mode. The proposed enabling technologies provide basis for selecting suitable RoF DAS based WSN and effectively reduce the power consumption.展开更多
At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the kn...At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).展开更多
A mathematical model for the dynamics of a prey-dependent consumption model concerning integrated pest management is proposed and analyzed. We show that there exists a globally stable pesteradication periodic solution...A mathematical model for the dynamics of a prey-dependent consumption model concerning integrated pest management is proposed and analyzed. We show that there exists a globally stable pesteradication periodic solution when the impulsive period is less than some critical values. Furthermore, the conditions for the permanence of the system are given. By using bifurcation theory, we show the existence of a nontrival periodic solution if the pest-eradication periodic solution loses its stability. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamics, which implies that dynamical behaviors of prey-dependent consumption concerning integrated pest management are very complex, including period-doubling cascades, chaotic bands with periodic windows, crises, symmetry-breaking bifurcations and supertransients.展开更多
Vehicle routing problem with time windows(VRPTW)is a core combinatorial optimization problem in distribution tasks.The electric vehicle routing problem with time windows under demand uncertainty and weight-related ene...Vehicle routing problem with time windows(VRPTW)is a core combinatorial optimization problem in distribution tasks.The electric vehicle routing problem with time windows under demand uncertainty and weight-related energy consumption is an extension of the VRPTW.Although some researchers have studied either the electric VRPTW with nonlinear energy consumption model or the impact of the uncertain customer demand on the conventional vehicles,the literature on the integration of uncertain demand and energy consumption of electric vehicles is still scarce.However,practically,it is usually not feasible to ignore the uncertainty of customer demand and the weight-related energy consumption of electronic vehicles(EVs)in actual operation.Hence,we propose the robust optimization model based on a route-related uncertain set to tackle this problem.Moreover,adaptive large neighbourhood search heuristic has been developed to solve the problem due to the NP-hard nature of the problem.The effectiveness of the method is verified by experiments,and the influence of uncertain demand and uncertain parameters on the solution is further explored.展开更多
This paper studies an investment and consumption problem with stochastic interest rate,where interest rate is governed by the Vasicek model.The financial market is composed of one riskfree asset and one risky asset,in...This paper studies an investment and consumption problem with stochastic interest rate,where interest rate is governed by the Vasicek model.The financial market is composed of one riskfree asset and one risky asset,in which stock price dynamics is assumed to be generally correlated with interest rate dynamics.The aim is to maximize expected utility of consumption and terminal wealth in the finite horizon.Legendre transform is used to deal with this investment and consumption problem and the explicit solutions of the optimal investment and consumption strategies with power and logarithm preference are achieved.Finally,the authors add a numerical example to analyze the effect of market parameters on the optimal investment and consumption strategy and provide some economic implications.展开更多
Based on a large number of researches and engineering practices both domestic and overseas, it is shown that the building parameters to be determined during scheme phase can exert a great effect on the building energy...Based on a large number of researches and engineering practices both domestic and overseas, it is shown that the building parameters to be determined during scheme phase can exert a great effect on the building energy consumption. In this paper, through a combination of the popular design method of building parameterization at present and the design goat of energy saving during the scheme phase, the author carries out researches on the design methods and toot development which are applicable to parameterization of building energy saving in this stage. In connection with the characteristics of both modeling process of parameterization and energy saving design, and by means of steady calculation as wetl as simulation, this paper establishes an simplified model to calculate the overall energy consumption of air-conditioning, heating, lighting and equipments, and ultimately gives suggestions on design of scheme for energy saving by optimization with the genetic algorithm (GA). On the basis of the model, a software platform is developed by computer language QTand openGL interface and is oriented to the design users and sets up the MMI (human-computer interaction) software interface for parameterization of building energy saving, which achieves automatic modeling of parameterization and promotes research on oractical design cases.展开更多
To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed ...To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed to provide an integrated energy (material) accounting and analysis approach for industrial production processes. By extending the existing processlevel IO models, the production, usage, export and loss of by-products were explicitly considered in the proposed IO model. Moreover, the by-products allocation procedures were incorporated into the proposed IO model to reflect individual contributions of products to energy consumption. Finally, the proposed model enabled calculating embodied energy of main products and total energy consumption under hierarchical accounting scope. Plant managers, energy management consultants, governmental officials and academic researchers could use this input-output model to account material and energy flows, thus calculating energy consumption indicators of a production process with their specific system boundary requirements. The accounting results could be further used for energy labeling, identifying bottlenecks of production activities, evaluating industrial symbiosis effects, improving materials and energy utilization efficiency, etc. The model could also be used as a planning tool to determine the effect that a particular change of technology and supply chains may have on the industrial production processes. The proposed model was tested and applied in a real integrated steel mill, which also provided the reference results for related researches. At last, some concepts, computational issues and limi- tations of the proposed model were discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11372166)the Scientific Research Fund of Zhejiang Province,China(Grant Nos.LY15A020007 and LY15E080013)+1 种基金the Natural Science Foundation of Ningbo,China(Grant Nos.2014A610028 and 2014A610022)the K.C.Wong Magna Fund in Ningbo University,China
文摘A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability conditions are obtained,and by using nonlinear analysis, the time-dependent Ginzburg-Landau(TDGL) equation and the modified Korteweg-de Vries(mKdV) equation are derived. Furthermore, the connection between TDGL and mKdV equations is also given. The numerical simulation is consistent with the theoretical analysis. The evolution of a traffic jam and the corresponding energy consumption are explored. The numerical results show that the control scheme is effective not only to suppress the traffic jam but also to reduce the energy consumption.
基金The authors received the sources of funding of a project,The Name:Special Project for Innovation and Entrepreneurship Education Reform in Hubei Province Colleges and Universities(2020),Item Number:136/5013602701.
文摘Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by using Back Propagation(BP)neural network to solve nonlinear problems and have the ability of global approximation and generalization.By analyzing the influence of different uses,different building surfaces and different energysaving schemes on the change of building energy consumption,the grey correlation method is used to determine the main influencing factors affecting each building energy consumption,including uses,building surfaces and energy-saving schemes,which are used as the input of the model and the building energy consumption as the output of the model,so as to establish the building energy consumption analysis model based on BP neural network.However,in practical application,BP neural network has the defects of slow convergence and easy to fall into local minima.In view of this,this paper uses genetic algorithm to optimize the weight and threshold of BP neural network,completes the improvement of various building energy consumption analysis models,and realizes the qualitative analysis of building energy consumption.The model verification results show that the viscosity of the building energy consumption analysis model based on genetic algorithm improved BP neural network algorithm(GABP)in this paper is relatively high,which is more accurate than the results of the traditional BP neural network model,and the relative error of the analysis model is reduced from 11.56%to 8.13%,which proves that the GABP can be better suitable for the study of school building energy consumption analysis model,It is applied to the prediction of building energy consumption,which lays a foundation for the realization of carbon neutralization in the South expansion plan of Yangtze University.
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
基金This work is partially supported by the National Natural Science Foundation of China(No.61571004,No.61571303)the National Science and Technology Major Project of China(No.2018ZX03001031)+3 种基金National Key Research and Development Program of China(No.2019YFB2101602)the Science and Technology Innovation Program of Shanghai(No.17DZ2292000,No.16510711600)the Shanghai Natural Science Foundation(No.16ZR1435200)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20170074).
文摘Energy efficiency is very important for the Internet of Things(IoT),especially for front-end sensed terminal or node.It not only embodies the node’s life,but also reflects the lifetime of the network.Meanwhile,it is also a key indicator of green communications.Unfortunately,there is no article on systematic analysis and review for energy efficiency evaluation in IoT.In this paper,we systemically analyze the architecture of IoT,and point out its energy distribution,Furthermore,we summarized the energy consumption model in IoT,analyzed the pros and cons of improving energy efficiency,presented a state of the art the evaluation metrics of energy efficiency.Finally,we conclude the techniques and methods,and carry out a few open research issues and directions in this field.
基金supported in part by National Key Basic Research Program of China (973 Program) under Grant No.2012CB315705National Hi-Tech Research and Development Program of China under Grant No.2011AA010306+2 种基金National Natural Science Foundation of China under Grant No.60932004, 61001121, 61107058 and 61120106001Beijing Excellent Doctoral Thesis Project under Grant No.YB20101001301the Cooperation Project between Province and Ministries under Grant No.2010B090400112
文摘Novel enabling technologies from physical layer to Medium Access Control (MAC) layer are proposed to provide energy efficient Radio-over-Fiber (RoF) Distributed Antenna System (DAS) based Wireless Sensor Networks (WSN). The power consumption performance of the network is evaluated in terms of the total network power consumption based on the proposed power consumption models from the physical layer. The results illustrate that for a given power consumption value, the tradeoff among the number of Remote Access Units (RAUs), the number of Multiple-Input Multiple-Output (MIMO) antennas and the number of hops must be taken into account. In order to efficiently reduce the total network power consumption, we also proposed a solution from the MAC layer using a sleep-aware MAC protocol, which can dynamically centralized control MIMO antennas to operate in a sleep mode. The proposed enabling technologies provide basis for selecting suitable RoF DAS based WSN and effectively reduce the power consumption.
基金supported by X-Project funded by the Ministry of Science,ICT&Future Planning under Grant No.NRF-2015R1A2A1A16074929
文摘At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).
基金This work is supported by National Natural Science Foundation of China (10171106)supported by ScienceResearch Project Foundation of Liaoning Province Education Department
文摘A mathematical model for the dynamics of a prey-dependent consumption model concerning integrated pest management is proposed and analyzed. We show that there exists a globally stable pesteradication periodic solution when the impulsive period is less than some critical values. Furthermore, the conditions for the permanence of the system are given. By using bifurcation theory, we show the existence of a nontrival periodic solution if the pest-eradication periodic solution loses its stability. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamics, which implies that dynamical behaviors of prey-dependent consumption concerning integrated pest management are very complex, including period-doubling cascades, chaotic bands with periodic windows, crises, symmetry-breaking bifurcations and supertransients.
文摘Vehicle routing problem with time windows(VRPTW)is a core combinatorial optimization problem in distribution tasks.The electric vehicle routing problem with time windows under demand uncertainty and weight-related energy consumption is an extension of the VRPTW.Although some researchers have studied either the electric VRPTW with nonlinear energy consumption model or the impact of the uncertain customer demand on the conventional vehicles,the literature on the integration of uncertain demand and energy consumption of electric vehicles is still scarce.However,practically,it is usually not feasible to ignore the uncertainty of customer demand and the weight-related energy consumption of electronic vehicles(EVs)in actual operation.Hence,we propose the robust optimization model based on a route-related uncertain set to tackle this problem.Moreover,adaptive large neighbourhood search heuristic has been developed to solve the problem due to the NP-hard nature of the problem.The effectiveness of the method is verified by experiments,and the influence of uncertain demand and uncertain parameters on the solution is further explored.
基金supported by the Humanities and Social Science Research Youth Foundation of Ministry of Education of China under Grant No.11YJC790006Center for Research of Regulation and Policy of Zhejiang Province of China under Grant No.13JDGZ03YB+1 种基金the project of National Statistical Science of China under Grant No.2013LY125the Higher School Science and Technology Development Foundation of Tianjin of China under Grant No.20100821
文摘This paper studies an investment and consumption problem with stochastic interest rate,where interest rate is governed by the Vasicek model.The financial market is composed of one riskfree asset and one risky asset,in which stock price dynamics is assumed to be generally correlated with interest rate dynamics.The aim is to maximize expected utility of consumption and terminal wealth in the finite horizon.Legendre transform is used to deal with this investment and consumption problem and the explicit solutions of the optimal investment and consumption strategies with power and logarithm preference are achieved.Finally,the authors add a numerical example to analyze the effect of market parameters on the optimal investment and consumption strategy and provide some economic implications.
文摘Based on a large number of researches and engineering practices both domestic and overseas, it is shown that the building parameters to be determined during scheme phase can exert a great effect on the building energy consumption. In this paper, through a combination of the popular design method of building parameterization at present and the design goat of energy saving during the scheme phase, the author carries out researches on the design methods and toot development which are applicable to parameterization of building energy saving in this stage. In connection with the characteristics of both modeling process of parameterization and energy saving design, and by means of steady calculation as wetl as simulation, this paper establishes an simplified model to calculate the overall energy consumption of air-conditioning, heating, lighting and equipments, and ultimately gives suggestions on design of scheme for energy saving by optimization with the genetic algorithm (GA). On the basis of the model, a software platform is developed by computer language QTand openGL interface and is oriented to the design users and sets up the MMI (human-computer interaction) software interface for parameterization of building energy saving, which achieves automatic modeling of parameterization and promotes research on oractical design cases.
文摘To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed to provide an integrated energy (material) accounting and analysis approach for industrial production processes. By extending the existing processlevel IO models, the production, usage, export and loss of by-products were explicitly considered in the proposed IO model. Moreover, the by-products allocation procedures were incorporated into the proposed IO model to reflect individual contributions of products to energy consumption. Finally, the proposed model enabled calculating embodied energy of main products and total energy consumption under hierarchical accounting scope. Plant managers, energy management consultants, governmental officials and academic researchers could use this input-output model to account material and energy flows, thus calculating energy consumption indicators of a production process with their specific system boundary requirements. The accounting results could be further used for energy labeling, identifying bottlenecks of production activities, evaluating industrial symbiosis effects, improving materials and energy utilization efficiency, etc. The model could also be used as a planning tool to determine the effect that a particular change of technology and supply chains may have on the industrial production processes. The proposed model was tested and applied in a real integrated steel mill, which also provided the reference results for related researches. At last, some concepts, computational issues and limi- tations of the proposed model were discussed.