Contact angle hysteresis(CAH) is one of the significant physical phenomena in electrowetting on dielectric(EWOD).In this work, a theoretical model is proposed to characterize electrowetting evolution on substrates wit...Contact angle hysteresis(CAH) is one of the significant physical phenomena in electrowetting on dielectric(EWOD).In this work, a theoretical model is proposed to characterize electrowetting evolution on substrates with CAH, and the relationship among apparent contact angle, potential, and some other parameters is quantified. And this theory is also validated experimentally. The results indicate that our theory and equation based on energy balance succeed in describing the electrowetting response of potential with significant contact angle hysteresis. The CAH in EWOD, ranging from 0° to about 20° in electrowetting cycle, increases with the increase of voltage and climbs up to about 20° when voltage is increased to about 38 V, and then decreases to zero with the further increase of voltage.展开更多
The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range...The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range of values between two extremes: the advancing and the receding contact angles. The difference between the advancing and the receding contact angles is conventionally called contact angle hysteresis. Knowledge of contact angle hysteresis is essential to understand surface wettability and control surface wetting behavior. The wettability can be affected, for example, by the roughness of the solid surface. In our work, textile is used as macroscopic roughness surfaces, and smooth plate surface is used as well to determine contact angle hysteresis. The advancing and receding contact angles are measured on polyamide materials.展开更多
It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently p...It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently primary instructions for designing superhydrophobic surfaces.However,the particular drop shape that a drop exhibits might depend on how it is formed. A water drop can occupy multiple equilibrium states,which relate to different local minimal energy.In some cases,both equilibrium states can even co-exist on a same substrate.Thus the apparent contact angles may vary and have different values.We discuss how the Wenzel and Cassie-Baxter equations determine the homogeneous and heterogeneous wetting theoretically. Contact angle analysis on hierarchical surface structure and contact angle hysteresis has been put specific attention.In particular, we study the energy barrier of transition from Cassie-Baxter state to Wenzel state,based on existing achievement by previous researchers,to determine the possibility of the transition and how it can be interpreted.It has been demonstrated that surface roughness and geometry will influence the energy required for a drop to get into equilibrium,no matter it is homogeneous or heterogeneous wetting.展开更多
Recently,super gas wet and gas wet surfaces have been extensively attended in petroleum industry,as supported by the increasing number of publications in the last decade related to wettability alteration in gas conden...Recently,super gas wet and gas wet surfaces have been extensively attended in petroleum industry,as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs.In many cases,contact angle measurement has been employed to assess the wettability alteration.Even though contact angle measurement seems to be a straightforward approach,there exist many misuses of this technique and consequently misinterpretation of the corresponding results.In this regard,a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem.To this end,this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry.As a preliminary step,advancing,receding,static,and the most stable contact angle terminology are defined.The study is followed by the definition of the contact angle hysteresis effect.The application of surface free energy in the selection of the best gas wet agent is then analyzed.Afterward,the impact of the size-dependent behavior of drop on contact angle is discussed.Finally,a sessile drop experiment is explained to achieve the defined parameters.For future contributions to petroleum industry journals,like this journal,this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.展开更多
为探究溴氰菊酯试剂液滴在蕹菜叶片表面的接触角滞后性规律,采用纤维细度分析仪和光学接触角测量仪,观测蕹菜叶面各分割部分的形貌特征,测量溴氰菊酯液滴的表面张力、液滴增加(或减少)过程动态接触角及铺展直径等润湿参数,并依据Equatio...为探究溴氰菊酯试剂液滴在蕹菜叶片表面的接触角滞后性规律,采用纤维细度分析仪和光学接触角测量仪,观测蕹菜叶面各分割部分的形貌特征,测量溴氰菊酯液滴的表面张力、液滴增加(或减少)过程动态接触角及铺展直径等润湿参数,并依据Equation of State法对叶片表面自由能进行计算和分析。结果显示,溴氰菊酯试剂液滴的表面张力在28.92~29.18 mN/m范围内;液滴在叶面的接触角滞后性Δθ范围为7.0°~10.1°,从叶片前端到中端再到末端,接触角滞后性呈先下降后上升的变化趋势。溴氰菊酯试剂液体与蕹菜叶片的表面自由能的大小越接近,越有利于液滴在蕹菜叶面铺展。展开更多
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011752)
文摘Contact angle hysteresis(CAH) is one of the significant physical phenomena in electrowetting on dielectric(EWOD).In this work, a theoretical model is proposed to characterize electrowetting evolution on substrates with CAH, and the relationship among apparent contact angle, potential, and some other parameters is quantified. And this theory is also validated experimentally. The results indicate that our theory and equation based on energy balance succeed in describing the electrowetting response of potential with significant contact angle hysteresis. The CAH in EWOD, ranging from 0° to about 20° in electrowetting cycle, increases with the increase of voltage and climbs up to about 20° when voltage is increased to about 38 V, and then decreases to zero with the further increase of voltage.
文摘The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range of values between two extremes: the advancing and the receding contact angles. The difference between the advancing and the receding contact angles is conventionally called contact angle hysteresis. Knowledge of contact angle hysteresis is essential to understand surface wettability and control surface wetting behavior. The wettability can be affected, for example, by the roughness of the solid surface. In our work, textile is used as macroscopic roughness surfaces, and smooth plate surface is used as well to determine contact angle hysteresis. The advancing and receding contact angles are measured on polyamide materials.
文摘It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently primary instructions for designing superhydrophobic surfaces.However,the particular drop shape that a drop exhibits might depend on how it is formed. A water drop can occupy multiple equilibrium states,which relate to different local minimal energy.In some cases,both equilibrium states can even co-exist on a same substrate.Thus the apparent contact angles may vary and have different values.We discuss how the Wenzel and Cassie-Baxter equations determine the homogeneous and heterogeneous wetting theoretically. Contact angle analysis on hierarchical surface structure and contact angle hysteresis has been put specific attention.In particular, we study the energy barrier of transition from Cassie-Baxter state to Wenzel state,based on existing achievement by previous researchers,to determine the possibility of the transition and how it can be interpreted.It has been demonstrated that surface roughness and geometry will influence the energy required for a drop to get into equilibrium,no matter it is homogeneous or heterogeneous wetting.
文摘Recently,super gas wet and gas wet surfaces have been extensively attended in petroleum industry,as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs.In many cases,contact angle measurement has been employed to assess the wettability alteration.Even though contact angle measurement seems to be a straightforward approach,there exist many misuses of this technique and consequently misinterpretation of the corresponding results.In this regard,a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem.To this end,this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry.As a preliminary step,advancing,receding,static,and the most stable contact angle terminology are defined.The study is followed by the definition of the contact angle hysteresis effect.The application of surface free energy in the selection of the best gas wet agent is then analyzed.Afterward,the impact of the size-dependent behavior of drop on contact angle is discussed.Finally,a sessile drop experiment is explained to achieve the defined parameters.For future contributions to petroleum industry journals,like this journal,this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.
文摘为探究溴氰菊酯试剂液滴在蕹菜叶片表面的接触角滞后性规律,采用纤维细度分析仪和光学接触角测量仪,观测蕹菜叶面各分割部分的形貌特征,测量溴氰菊酯液滴的表面张力、液滴增加(或减少)过程动态接触角及铺展直径等润湿参数,并依据Equation of State法对叶片表面自由能进行计算和分析。结果显示,溴氰菊酯试剂液滴的表面张力在28.92~29.18 mN/m范围内;液滴在叶面的接触角滞后性Δθ范围为7.0°~10.1°,从叶片前端到中端再到末端,接触角滞后性呈先下降后上升的变化趋势。溴氰菊酯试剂液体与蕹菜叶片的表面自由能的大小越接近,越有利于液滴在蕹菜叶面铺展。