In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) ...In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.展开更多
Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off...Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%.展开更多
Main aim of this study was focused on characterization of the effect of microwave air plasma treatment on wettability of synthetic polymer surfaces. Wettability of solid polymer surfaces polyethylene, polypropylene, p...Main aim of this study was focused on characterization of the effect of microwave air plasma treatment on wettability of synthetic polymer surfaces. Wettability of solid polymer surfaces polyethylene, polypropylene, polystyrene (PE, PP, PS) was followed as a function of plasma treatment time. For evaluation the equilibrium contact angles of wetting as well as dynamic contact angles of wetting were determined by means of sessile drop and Wilhelmy plate methods. Free surface energy (SFE) of studied samples were calculated from the experimentally determined contact angles using Fowkes and van Oss, Chaudhury and Good (vOCG) approaches. It was found that with prolonged treatment time the total surface free energy of PE was two times increased from 23 mJ/m2 to 45 mJ/m2 after 360 s plasma treatment time (calculated for W and EG as wetting liquids). Similar effect was found for all studied polymers. With respect to the dispersive and polar components of the total surface free energy the vigorous effect was found for polar component, for which it was increased from 7 mJ/m2 to 20 mJ/m2.展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting are...The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure.展开更多
Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions ...Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.展开更多
When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-che...When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-chemical properties of the electric arc created, such as the composition of which depends on the material of the electrical contacts. In this work, we determine the equilibrium composition of the electric arc in the low voltage air circuit breaker with silver tin dioxide alloy contacts, in a temperature range from 500 K to 15,000 K and at atmospheric pressure. We use the Gibbs free energy minimization method and develop a computer code to determine the equilibrium composition of the created plasma. The analysis of the results obtained shows that O<sub>2</sub> particles with a dissociation energy of 5.114 eV, NO with a dissociation energy of 6.503 eV, and N<sub>2</sub> dissociation 9.756 eV dissociate around 3500 K, 5000 K, and 7500 K, respectively. We note that the electro-neutrality is established between the electrons and the cations: Ag<sup>+</sup> and NO<sup>+</sup>, for temperatures lower than 6500 K. For temperatures higher than 6500 K, the electro-neutrality is established between the electrons and the cations: N<sup>+</sup>, O<sup>+</sup>, and Ag<sup>+</sup>. The numerical density of the electrons increases when the proportion of the vapor of the electrical contacts increases in the mixture, in particular for temperatures lower than 11,000 K.展开更多
In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment....In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.展开更多
Plasma X-ray sources for biological microscopy have been produced by focusing single shots from Nd:glass laser onto carbon rod targets at irradiances between 1 × 1013 W⋅cm−2 and 3 × 1013 W...Plasma X-ray sources for biological microscopy have been produced by focusing single shots from Nd:glass laser onto carbon rod targets at irradiances between 1 × 1013 W⋅cm−2 and 3 × 1013 W⋅cm−2 to expose test objects. The optimum parameters needed for obtaining high accurate information on the samples under test namely: the minimum energies and irradiances at a range of angles between the incoming laser beam and the normal to the resist, the depth of exposure of the photoresist as a function of incident laser energy (and irradiance) were concluded in this work.展开更多
[Objective] The paper was to study the effect of cold plasma on binding strength of bamboo. [Method] The bamboos were treated by 4 kinds of cold plasma nitrogen, oxygen, ammonia and argon, and the changes of contact a...[Objective] The paper was to study the effect of cold plasma on binding strength of bamboo. [Method] The bamboos were treated by 4 kinds of cold plasma nitrogen, oxygen, ammonia and argon, and the changes of contact angle and binding strength of bamboos before and after treatment were tested. [Result] Oxygen cold plasma treatment could increase binding strength of bamboo by 25%-30%. The cold plasma treatment was very fast and effective, but the changes of contact angle was not great in this experiment. [Conclusion] Cold plasma treatment could increase the binding strength of bamboo.展开更多
In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of...In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of the treated/un- treated wood were tested. The chemical composition on the surface of wood with or without N2 cold plasma treatment was also studied by X-ray photoelectron spec- troscopy (XPS). The results showed: the contact angles of the surface decreased; the surface free energy increased evidently that treated by N2 or O2 cold plasma; the average bonding performance of wood that treated by cold plasma (whether N2 or O2) increased obviously and more than 50% was proved compared with that un- treated by cold plasma. The XPS analysis showed the atomic ratio O/C has in- creased, and more groups were oxidized or more peroxides were formed on the surface of wood; N element was introduced to the wood surface after nitrogen cold plasma treatment and it was estimated to the group of -NH2.展开更多
An atmospheric pressure argon plasma brush with air addition is employed to treat polyethylene terephthalate(PET)surface in order to improve its hydrophilicity.Results indicate that the plasma plume generated by the p...An atmospheric pressure argon plasma brush with air addition is employed to treat polyethylene terephthalate(PET)surface in order to improve its hydrophilicity.Results indicate that the plasma plume generated by the plasma brush presents periodically pulsed current despite a direct current voltage is applied.Voltage-current curve reveals that there is a transition from a Townsend discharge regime to a glow one during one discharge period.Optical emission spectrum indicates that more oxygen atoms are produced in the plume with increasing air content,which leads to the better hydrophilicity of PET surface after plasma treatment.Besides,an aging behavior is also observed.The hydrophilicity improvement is attributed to the production of oxygen functional groups,which increase in number with increasing air content.Moreover,some grain-like structures are observed on the treated PET surface,and its mean roughness increases with increasing air content.These results are of great importance for the hydrophilicity improvement of PET surface with a large scale.展开更多
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have...An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.展开更多
Poly(ethylene glycol) methyl ether methacrylate(PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophil...Poly(ethylene glycol) methyl ether methacrylate(PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption.The surface properties were characterized by contact angle measurement,x-ray photoelectron spectroscopy(XPS) and atomic force microscopy respectively.The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis.The results indicated that a thin layer of PEGMA was successfully grafted.The surface hydrophilicity was bettered and surface free energy increased.The lysozyme adsorption on the lens surface was reduced greatly.展开更多
Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that...Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.展开更多
基金supported by National Natural Science Foundation of China(No.21367023)Natural Science Foundation of Gansu Province,China(No.1208RJZA161)Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University of China(Nos.NWNU-LKQN-10-16 and NWNU-LKQN-12-9)
文摘In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.
基金supported by Basic Research Funds for Central Universities(3122019189).
文摘Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%.
基金support of Operational Program Research and Development for Innovations co-funded by European Regional Development Fund(ERDF)and national budget of Czech Republic within the frame work of the Centre of Polymer Systems project(reg.number CZ.1.05/2.1.00/03.0111)to the Tomas Bata University in Zlin Internal Grant Agency project no.IGA/FT/2012/020.
文摘Main aim of this study was focused on characterization of the effect of microwave air plasma treatment on wettability of synthetic polymer surfaces. Wettability of solid polymer surfaces polyethylene, polypropylene, polystyrene (PE, PP, PS) was followed as a function of plasma treatment time. For evaluation the equilibrium contact angles of wetting as well as dynamic contact angles of wetting were determined by means of sessile drop and Wilhelmy plate methods. Free surface energy (SFE) of studied samples were calculated from the experimentally determined contact angles using Fowkes and van Oss, Chaudhury and Good (vOCG) approaches. It was found that with prolonged treatment time the total surface free energy of PE was two times increased from 23 mJ/m2 to 45 mJ/m2 after 360 s plasma treatment time (calculated for W and EG as wetting liquids). Similar effect was found for all studied polymers. With respect to the dispersive and polar components of the total surface free energy the vigorous effect was found for polar component, for which it was increased from 7 mJ/m2 to 20 mJ/m2.
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金the National Natural Science Foundation of China for the financial support under the contract Nos.50275076 and 50605032.
文摘The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure.
文摘Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.
文摘When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-chemical properties of the electric arc created, such as the composition of which depends on the material of the electrical contacts. In this work, we determine the equilibrium composition of the electric arc in the low voltage air circuit breaker with silver tin dioxide alloy contacts, in a temperature range from 500 K to 15,000 K and at atmospheric pressure. We use the Gibbs free energy minimization method and develop a computer code to determine the equilibrium composition of the created plasma. The analysis of the results obtained shows that O<sub>2</sub> particles with a dissociation energy of 5.114 eV, NO with a dissociation energy of 6.503 eV, and N<sub>2</sub> dissociation 9.756 eV dissociate around 3500 K, 5000 K, and 7500 K, respectively. We note that the electro-neutrality is established between the electrons and the cations: Ag<sup>+</sup> and NO<sup>+</sup>, for temperatures lower than 6500 K. For temperatures higher than 6500 K, the electro-neutrality is established between the electrons and the cations: N<sup>+</sup>, O<sup>+</sup>, and Ag<sup>+</sup>. The numerical density of the electrons increases when the proportion of the vapor of the electrical contacts increases in the mixture, in particular for temperatures lower than 11,000 K.
文摘In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.
文摘Plasma X-ray sources for biological microscopy have been produced by focusing single shots from Nd:glass laser onto carbon rod targets at irradiances between 1 × 1013 W⋅cm−2 and 3 × 1013 W⋅cm−2 to expose test objects. The optimum parameters needed for obtaining high accurate information on the samples under test namely: the minimum energies and irradiances at a range of angles between the incoming laser beam and the normal to the resist, the depth of exposure of the photoresist as a function of incident laser energy (and irradiance) were concluded in this work.
基金Supported by Opening Research Project for Key Laboratory of Bamboo in Zhejiang Forestry Academy(2010K04)~~
文摘[Objective] The paper was to study the effect of cold plasma on binding strength of bamboo. [Method] The bamboos were treated by 4 kinds of cold plasma nitrogen, oxygen, ammonia and argon, and the changes of contact angle and binding strength of bamboos before and after treatment were tested. [Result] Oxygen cold plasma treatment could increase binding strength of bamboo by 25%-30%. The cold plasma treatment was very fast and effective, but the changes of contact angle was not great in this experiment. [Conclusion] Cold plasma treatment could increase the binding strength of bamboo.
基金Supported by National Natural Science Foundation of China(Project No.30930074)the Construction of Bamboo Research Innovation in Zhejiang Forestry Academy(No2012F20024)~~
文摘In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of the treated/un- treated wood were tested. The chemical composition on the surface of wood with or without N2 cold plasma treatment was also studied by X-ray photoelectron spec- troscopy (XPS). The results showed: the contact angles of the surface decreased; the surface free energy increased evidently that treated by N2 or O2 cold plasma; the average bonding performance of wood that treated by cold plasma (whether N2 or O2) increased obviously and more than 50% was proved compared with that un- treated by cold plasma. The XPS analysis showed the atomic ratio O/C has in- creased, and more groups were oxidized or more peroxides were formed on the surface of wood; N element was introduced to the wood surface after nitrogen cold plasma treatment and it was estimated to the group of -NH2.
基金supported by National Natural Science Foundation of China(Nos.11875121,11575050 and51977057)the Midwest Universities Comprehensive Strength Promotion Project+4 种基金the Natural Science Foundation of Hebei Province,China(Nos.A2019201100,A2020201025)College Hundred Outstanding Innovative Talent Support Program of Hebei Education Bureau(No.SLRC2017021)Post-graduate’s Innovation Fund Project of Hebei Province(Nos.CXZZBS2019023,CXZZBS2019029)the Natural Science Interdisciplinary Research Program of Hebei University(No.DXK201908)Post-graduate’s Innovation Fund Project of Hebei University(No.HBU2021bs011)。
文摘An atmospheric pressure argon plasma brush with air addition is employed to treat polyethylene terephthalate(PET)surface in order to improve its hydrophilicity.Results indicate that the plasma plume generated by the plasma brush presents periodically pulsed current despite a direct current voltage is applied.Voltage-current curve reveals that there is a transition from a Townsend discharge regime to a glow one during one discharge period.Optical emission spectrum indicates that more oxygen atoms are produced in the plume with increasing air content,which leads to the better hydrophilicity of PET surface after plasma treatment.Besides,an aging behavior is also observed.The hydrophilicity improvement is attributed to the production of oxygen functional groups,which increase in number with increasing air content.Moreover,some grain-like structures are observed on the treated PET surface,and its mean roughness increases with increasing air content.These results are of great importance for the hydrophilicity improvement of PET surface with a large scale.
基金supported by National Natural Science Foundation of China(Nos.51077008 and 11247239)
文摘An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.
基金supported by National Natural Science Foundation of China(No.51273072)
文摘Poly(ethylene glycol) methyl ether methacrylate(PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption.The surface properties were characterized by contact angle measurement,x-ray photoelectron spectroscopy(XPS) and atomic force microscopy respectively.The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis.The results indicated that a thin layer of PEGMA was successfully grafted.The surface hydrophilicity was bettered and surface free energy increased.The lysozyme adsorption on the lens surface was reduced greatly.
基金The project supported by the Key Project of Science and Technology from the Ministry of Education China (No. 00250) the project of KJCXGC-01 of Northwest Normal University, China
文摘Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.