Piezoresponse Force Spectroscopy(PFS)is a powerful technique widely used for measuring the nanoscale electromechanical coupling of the ferro-/piezo-electric materials.However,it is found that certain nonferroelectric ...Piezoresponse Force Spectroscopy(PFS)is a powerful technique widely used for measuring the nanoscale electromechanical coupling of the ferro-/piezo-electric materials.However,it is found that certain nonferroelectric materials can also generate the“hysteresis-loop-like”responses from the PFS measurements due to many other factors such as electrostatic effects.This work therefore studies the signal of the contact resonance frequency during the PFS measurements.By comparing the results from ferroelectric and non-ferroelectric materials,it is found there are distinct differences between these two types of materials in the variation of the contact resonance frequency during the PFS measurements.A momentary and sharp increase of the contact resonance frequency occurs when the domain is switched by applying the DC bias,which can be regarded as a unique characteristic for the ferroelectric materials.After analyzing the reliability and mechanism of this method,it is proposed that the contact resonance frequency variation at the coercive bias is capable to differentiate the electromechanical responses of the ferroelectric and non-ferroelectric materials during the PFS measurements.展开更多
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel...The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.展开更多
In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated a...In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.展开更多
Mechanical vibration,as an alternative of application of solid/liquid lubricants,has been an effective means to modulate friction at the macroscale.Recently,atomic force microscopy(AFM)experiments and model simulation...Mechanical vibration,as an alternative of application of solid/liquid lubricants,has been an effective means to modulate friction at the macroscale.Recently,atomic force microscopy(AFM)experiments and model simulations also suggest a similar vibration-induced friction reduction effect for nanoscale contact interfaces,although an additional external vibration source is typically needed to excite the system.Here,by introducing a piezoelectric thin film along the contact interface,we demonstrate that friction measured by a conductive AFM probe can be significantly reduced(more than 70%)when an alternating current(AC)voltage is applied.Such real-time friction modulation is achieved owing to the localized nanoscale vibration originating from the intrinsic inverse piezoelectric effect,and is applicable for various material combinations.Assisted by analysis with the Prandtl–Tomlinson(P–T)friction model,our experimental results suggest that there exists an approximately linear correlation between the vibrational amplitude and the relative factor for perturbation of sliding energy corrugation.This work offers a viable strategy for realizing active friction modulation for small-scale interfaces without the need of additional vibration source or global excitation that may adversely impact device functionalities.展开更多
基金the financial support by Ministry of Education,Singapore,through National University of Singapore(NUS)under the Academic Research Fund(ARF)of grant number R-265-000-596-112the post-graduate scholarship provide by NUSthe support for post-doctoral research fellow from ARF of R-265-000-596-112 by Ministry of Education,Singapore.
文摘Piezoresponse Force Spectroscopy(PFS)is a powerful technique widely used for measuring the nanoscale electromechanical coupling of the ferro-/piezo-electric materials.However,it is found that certain nonferroelectric materials can also generate the“hysteresis-loop-like”responses from the PFS measurements due to many other factors such as electrostatic effects.This work therefore studies the signal of the contact resonance frequency during the PFS measurements.By comparing the results from ferroelectric and non-ferroelectric materials,it is found there are distinct differences between these two types of materials in the variation of the contact resonance frequency during the PFS measurements.A momentary and sharp increase of the contact resonance frequency occurs when the domain is switched by applying the DC bias,which can be regarded as a unique characteristic for the ferroelectric materials.After analyzing the reliability and mechanism of this method,it is proposed that the contact resonance frequency variation at the coercive bias is capable to differentiate the electromechanical responses of the ferroelectric and non-ferroelectric materials during the PFS measurements.
基金supported by the National Basic Research Program of China (Grant 2011CB711103)the National Natural Science Foundation of China (Grants U1134202,U1361117)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT1178)the 2014 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities
文摘The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.
基金Project supported by the National Natural Science Foundation of China(Grant No.50775005)
文摘In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.
基金This work was funded by the National Natural Science Foundation of China(12025203,11772169,11921002,and 11890671)the National Science and Technology Major Project(2017-VI-0003-0073)the Initiative Program of State Key Laboratory of Tribology(SKLT2019B02).
文摘Mechanical vibration,as an alternative of application of solid/liquid lubricants,has been an effective means to modulate friction at the macroscale.Recently,atomic force microscopy(AFM)experiments and model simulations also suggest a similar vibration-induced friction reduction effect for nanoscale contact interfaces,although an additional external vibration source is typically needed to excite the system.Here,by introducing a piezoelectric thin film along the contact interface,we demonstrate that friction measured by a conductive AFM probe can be significantly reduced(more than 70%)when an alternating current(AC)voltage is applied.Such real-time friction modulation is achieved owing to the localized nanoscale vibration originating from the intrinsic inverse piezoelectric effect,and is applicable for various material combinations.Assisted by analysis with the Prandtl–Tomlinson(P–T)friction model,our experimental results suggest that there exists an approximately linear correlation between the vibrational amplitude and the relative factor for perturbation of sliding energy corrugation.This work offers a viable strategy for realizing active friction modulation for small-scale interfaces without the need of additional vibration source or global excitation that may adversely impact device functionalities.