The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated. And, a new...The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated. And, a new method, which combines the C4D technique and the principle of cross-correlation velocity measurement, is proposed for the measurement of bubble velocity. This research includes two parts. First, based on the principle of C4 D, a new five-electrode C4D sensor is developed. Then, with two conductivity signals obtained by the C4D sensor, the velocity measurement of bubble is implemented according to the principle of cross-correlation. The research results indicate that the C4D technique is highly effective and anticipates a broad potential in the field of two-phase flow. Experimental results show that the five-electrode C4D sensor is suitable for measuring the velocity of single bubbles with a relative error of less than 5%.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51076141 and 60972138)
文摘The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated. And, a new method, which combines the C4D technique and the principle of cross-correlation velocity measurement, is proposed for the measurement of bubble velocity. This research includes two parts. First, based on the principle of C4 D, a new five-electrode C4D sensor is developed. Then, with two conductivity signals obtained by the C4D sensor, the velocity measurement of bubble is implemented according to the principle of cross-correlation. The research results indicate that the C4D technique is highly effective and anticipates a broad potential in the field of two-phase flow. Experimental results show that the five-electrode C4D sensor is suitable for measuring the velocity of single bubbles with a relative error of less than 5%.