The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2...The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.展开更多
Effect of small content of chromium(Cr) on wet–dry acid corrosion behavior of low alloy steels has been investigated.The results show that the corrosion resistance of the steels increased with increasing Cr content...Effect of small content of chromium(Cr) on wet–dry acid corrosion behavior of low alloy steels has been investigated.The results show that the corrosion resistance of the steels increased with increasing Cr content from 0.10 to0.50 wt%.Higher content of Cr promotes initial corrosion and accelerates the formation of dense and protective rust in long-term corrosion.The enhanced protectiveness of the rust is closely related to its composition.High content of Cr increases the content of amorphous phases and decreases the content of c-Fe OOH in the rust,resulting in the high compactness of the rust and low electrochemical activity in acid condition.Cr dopes in rust and depresses the transformation from amorphous phases to a-Fe OOH,as well as the growth process of Fe OOH particles,which is responsible for the enhanced compactness of rust in long-term corrosion.展开更多
As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy ...As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy steel with chromium contents was studied in O2-CO2-SO2-H2 S wet gas environment. Corrosion rate was measured, and the microstructure and morphology of corrosion product film were characterized by scanning electron microscopy (SEM). The phase and chemical composition of the corrosion product film were investigated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The effect of misorientation distribution on corro- sion resistance of steel was evaluated by electron backscattered diffraction (EBSD). The results showed that corro- sion rate decreased with increasing chromium content in the low-alloy steel, and the corrosion type was general corrosion. The phenomenon of chromium enrichment was found in corrosion product film consisting of a-FeOOH, γ- FeOOH, sulphur, FeS2 and Fel-xS. The increase of chromium content decreases the amount of high-angle grain boundaries, thus resulting in the improvement of corrosion resistance.展开更多
文摘The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.
基金the funding support from the National Natural Science Foundation of China(Project No.51571027)
文摘Effect of small content of chromium(Cr) on wet–dry acid corrosion behavior of low alloy steels has been investigated.The results show that the corrosion resistance of the steels increased with increasing Cr content from 0.10 to0.50 wt%.Higher content of Cr promotes initial corrosion and accelerates the formation of dense and protective rust in long-term corrosion.The enhanced protectiveness of the rust is closely related to its composition.High content of Cr increases the content of amorphous phases and decreases the content of c-Fe OOH in the rust,resulting in the high compactness of the rust and low electrochemical activity in acid condition.Cr dopes in rust and depresses the transformation from amorphous phases to a-Fe OOH,as well as the growth process of Fe OOH particles,which is responsible for the enhanced compactness of rust in long-term corrosion.
基金Item Sponsored by National Science and Technology Major Project of the Ministry of Science and Technology of China(2011ZX05016-004)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE25B00)
文摘As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy steel with chromium contents was studied in O2-CO2-SO2-H2 S wet gas environment. Corrosion rate was measured, and the microstructure and morphology of corrosion product film were characterized by scanning electron microscopy (SEM). The phase and chemical composition of the corrosion product film were investigated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The effect of misorientation distribution on corro- sion resistance of steel was evaluated by electron backscattered diffraction (EBSD). The results showed that corro- sion rate decreased with increasing chromium content in the low-alloy steel, and the corrosion type was general corrosion. The phenomenon of chromium enrichment was found in corrosion product film consisting of a-FeOOH, γ- FeOOH, sulphur, FeS2 and Fel-xS. The increase of chromium content decreases the amount of high-angle grain boundaries, thus resulting in the improvement of corrosion resistance.