A semi-analytical/numerical model based on the multiple scattering (MS) method has been established for analyzing the effect of acoustic performance on main energy attenua- tion mechanism in viscoelastic coating con...A semi-analytical/numerical model based on the multiple scattering (MS) method has been established for analyzing the effect of acoustic performance on main energy attenua- tion mechanism in viscoelastic coating containing axisymmetric cavities. The basic functions of stress and displacement of the axisymmetric cavity surface are derived in the system of spheri- cal coordinates. The transition matrix between the incident wave and the scattering wave are obtained by the numerical integral of the basic functions of the cavity surface. The reflection, transmission and absorption performance of viscoelastic materials containing periodic cavities are calculated using the MS method and the wave propagating theory of the multi-layered medium. The results indicate that low frequency energy is mainly attenuated through cavity resonance. The resonant properties are found to be very sensitive to the boundary conditions. The coupling of the double-cavity is capable of extending the absorption to even lower fre- quencies. The absorption performance of the viscoelastic coating in the high frequency range is independent of the backing material. Its energy attenuation depends mainly on acoustic properties of cavity scattering and mode conversion.展开更多
Managing software packages in a scientific computing environment is a challenging task, especially in the case of heterogeneous systems. It is error prone when installing and updating software packages in a sophistica...Managing software packages in a scientific computing environment is a challenging task, especially in the case of heterogeneous systems. It is error prone when installing and updating software packages in a sophisticated computing environment. Testing and performance evaluation in an on-the-fly manner is also a troublesome task for a production system. In this paper, we discuss a package management scheme based on containers. The newly developed method can ease the maintenance complexity and reduce human mistakes. We can benefit from the self-containing and isolation features of container technologies for maintaining the software packages among intricately connected clusters. By deploying the Super Computing application Strore(SCStore) over the WAN connected world-largest clusters, it proved that it can greatly reduce the effort for maintaining the consistency of software environment and bring benefit to achieve automation.展开更多
基金supported by the National Nature Science Foundation of China(11104310)the 973 National key Basic Research Program of China(2013CB632900)the 863 National High Technology Program of China(2011AA11A103)
文摘A semi-analytical/numerical model based on the multiple scattering (MS) method has been established for analyzing the effect of acoustic performance on main energy attenua- tion mechanism in viscoelastic coating containing axisymmetric cavities. The basic functions of stress and displacement of the axisymmetric cavity surface are derived in the system of spheri- cal coordinates. The transition matrix between the incident wave and the scattering wave are obtained by the numerical integral of the basic functions of the cavity surface. The reflection, transmission and absorption performance of viscoelastic materials containing periodic cavities are calculated using the MS method and the wave propagating theory of the multi-layered medium. The results indicate that low frequency energy is mainly attenuated through cavity resonance. The resonant properties are found to be very sensitive to the boundary conditions. The coupling of the double-cavity is capable of extending the absorption to even lower fre- quencies. The absorption performance of the viscoelastic coating in the high frequency range is independent of the backing material. Its energy attenuation depends mainly on acoustic properties of cavity scattering and mode conversion.
基金supported by the National Key R&D Program of China(No.2016YFA0602100)the National Natural Science Foundation of China(No.91530323)Open Fund of Key Laboratory of Data Analysis and Applications,SOA(No.LDAA-2014-03)
文摘Managing software packages in a scientific computing environment is a challenging task, especially in the case of heterogeneous systems. It is error prone when installing and updating software packages in a sophisticated computing environment. Testing and performance evaluation in an on-the-fly manner is also a troublesome task for a production system. In this paper, we discuss a package management scheme based on containers. The newly developed method can ease the maintenance complexity and reduce human mistakes. We can benefit from the self-containing and isolation features of container technologies for maintaining the software packages among intricately connected clusters. By deploying the Super Computing application Strore(SCStore) over the WAN connected world-largest clusters, it proved that it can greatly reduce the effort for maintaining the consistency of software environment and bring benefit to achieve automation.