期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
iDEAL-CIO: Instant Digital Express Advocated “Magic Lamp” for Cloud Intelligence Outlet
1
作者 Sheldon Liang Paul Anthony Miller +1 位作者 Brendan Shane Rowe Alexis Rainbow 《Intelligent Information Management》 2024年第1期35-63,共29页
Instant Digital Express iDEAL-CIO The “Magic Lamp” for Cloud Intelligence Outlet, which has been recommended, combines innovations to satisfy modern users’ needs and efficiently sift through the ever-expanding amou... Instant Digital Express iDEAL-CIO The “Magic Lamp” for Cloud Intelligence Outlet, which has been recommended, combines innovations to satisfy modern users’ needs and efficiently sift through the ever-expanding amount of intelligent content stored in the cloud. One such innovation introduces a ground-breaking concept to remove superfluous and outdated sequential search patterns that overwhelm the user and computer in order to better serve the user in an eclectic & elastic and multidimensional approach to finding, grouping, assimilation, organizing, and delivering archival content. The cloud intelligence outlet (CIO) is presented in this article as the perfect magic lamp option for quick digital express advocacy. The grouping, indexing, folding, and targeting (GIFT) method of multidimensional online synthetic/analytical intelligent content (MOSAIC) for adaptive intelligence is the fundamental intelligent aggregation and automated process of the Magic Lamp. Three perspectives above this new ideal framework are available to observe: The Magic Lamp proposes contextual and multiple analytical tracks to improve cloud intelligence services conceptually. Technically speaking, MOSAIC combines domain-specific services for a wide range of international users, and through the usage of Cloud Intelligence Outlet, GIFT operationally activates grouping, indexing, folding, and targeting to promote decent experience and in-depth research on target for users’ wants. Because of this, iDEAL-CIO works in tandem with cloud extraction, digital transformation, and archival loading to provide improved service through the readily accessible cloud intelligence outlet. 展开更多
关键词 iDEAL-CIO MOSAIC Multidimensional Online Synthetic/Analytical Intelligent content
下载PDF
基于精确扩散反演的生成式图像内生水印方法
2
作者 李莉 张新鹏 +2 位作者 王子驰 吴德阳 吴汉舟 《网络空间安全科学学报》 2024年第1期92-100,共9页
扩散模型在图像生成方面取得了显著成就,但生成的图像真假难辨,因此滥用扩散模型将引发隐私安全、法律伦理等社会问题。对生成模型的输出添加水印可以追踪生成内容版权,防止人工智能生成内容造成潜在危害。对于去噪扩散模型,在初始噪声... 扩散模型在图像生成方面取得了显著成就,但生成的图像真假难辨,因此滥用扩散模型将引发隐私安全、法律伦理等社会问题。对生成模型的输出添加水印可以追踪生成内容版权,防止人工智能生成内容造成潜在危害。对于去噪扩散模型,在初始噪声向量中添加水印的内生水印方法可直接生成含水印图像,版权验证时通过反向扩散重建初始向量以提取水印。但扩散模型中的采样过程并不是严格可逆,重建的噪声向量与原始噪声存在较大误差,很难保证水印的准确提取。通过引入基于耦合变换的精确反向扩散,可以更加准确地重建初始噪声向量,提升水印提取的准确性。通过实验验证了引入基于耦合变换的精确反向扩散对于生成式图像内生水印的性能提升,实验结果表明,内生水印可以在生成图像中嵌入不可见水印,嵌入的水印可通过精确反向扩散被准确提取,并具有一定的稳健性。 展开更多
关键词 生成式人工智能(Artificial intelligence Generated content AIGC)溯源 模型水印 数字水印 去噪扩散模型 反向扩散
下载PDF
Cogeneration of Innovative Audio-visual Content: A New Challenge for Computing Art
3
作者 Mengting Liu Ying Zhou +1 位作者 Yuwei Wu Feng Gao 《Machine Intelligence Research》 EI CSCD 2024年第1期4-28,共25页
In recent years,computing art has developed rapidly with the in-depth cross study of artificial intelligence generated con-tent(AIGC)and the main features of artworks.Audio-visual content generation has gradually been... In recent years,computing art has developed rapidly with the in-depth cross study of artificial intelligence generated con-tent(AIGC)and the main features of artworks.Audio-visual content generation has gradually been applied to various practical tasks,including video or game score,assisting artists in creation,art education and other aspects,which demonstrates a broad application pro-spect.In this paper,we introduce innovative achievements in audio-visual content generation from the perspective of visual art genera-tion and auditory art generation based on artificial intelligence(Al).We outline the development tendency of image and music datasets,visual and auditory content modelling,and related automatic generation systems.The objective and subjective evaluation of generated samples plays an important role in the measurement of algorithm performance.We provide a cogeneration mechanism of audio-visual content in multimodal tasks from image to music and display the construction of specific stylized datasets.There are still many new op-portunities and challenges in the field of audio-visual synesthesia generation,and we provide a comprehensive discussion on them. 展开更多
关键词 Artificial intelligence(AI)art AUDIO-VISUAL artificial intelligence generated content(AIGC) MULTIMODAL artistic evalu-ation
原文传递
Prompt learning in computer vision: a survey 被引量:1
4
作者 Yiming LEI Jingqi LI +2 位作者 Zilong LI Yuan CAO Hongming SHAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第1期42-63,共22页
Prompt learning has attracted broad attention in computer vision since the large pre-trained visionlanguagemodels (VLMs) exploded. Based on the close relationship between vision and language information builtby VLM, p... Prompt learning has attracted broad attention in computer vision since the large pre-trained visionlanguagemodels (VLMs) exploded. Based on the close relationship between vision and language information builtby VLM, prompt learning becomes a crucial technique in many important applications such as artificial intelligencegenerated content (AIGC). In this survey, we provide a progressive and comprehensive review of visual promptlearning as related to AIGC. We begin by introducing VLM, the foundation of visual prompt learning. Then, wereview the vision prompt learning methods and prompt-guided generative models, and discuss how to improve theefficiency of adapting AIGC models to specific downstream tasks. Finally, we provide some promising researchdirections concerning prompt learning. 展开更多
关键词 Prompt learning Visual prompt tuning(VPT) Image generation Image classification Artificial intelligence generated content(AIGC)
原文传递
AIGC challenges and opportunities related to public safety:A case study of ChatGPT 被引量:11
5
作者 Danhuai Guo Huixuan Chen +1 位作者 Ruoling Wu Yangang Wang 《Journal of Safety Science and Resilience》 EI CSCD 2023年第4期329-339,共11页
Artificial intelligence generated content(AIGC)is a production method based on artificial intelligence(AI)technology that finds rules through data and automatically generates content.In contrast to computational intel... Artificial intelligence generated content(AIGC)is a production method based on artificial intelligence(AI)technology that finds rules through data and automatically generates content.In contrast to computational intelligence,generative AI,as exemplified by ChatGPT,exhibits characteristics that increasingly resemble human-level comprehension and creation processes.This paper provides a detailed technical framework and history of ChatGPT,followed by an examination of the challenges posed to political security,military security,economic security,cultural security,social security,ethical security,legal security,machine escape problems,and information leakage.Finally,this paper discusses the potential opportunities that AIGC presents in the realms of politics,military,cybersecurity,society,and public safety education. 展开更多
关键词 Generative artificial intelligence Artificial intelligence generated content ChatGPT Public safety Strong artificial intelligence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部