Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low tim...Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.展开更多
The goal of the research on ontology framework for content-based 3D model retrieval is to develop a rich set of 3D model semantic representation so that both humans and machines can generate and understand model descr...The goal of the research on ontology framework for content-based 3D model retrieval is to develop a rich set of 3D model semantic representation so that both humans and machines can generate and understand model descriptions and processing for fast efficient retrieval from model collections. The purpose of ontology development for content-based 3D model retrieval is intended to describe model information regardless of storage, feature extraction and creation. The ontology includes the information on media features, low level visual descriptors, non media features of 3D model and their relationships. It is implemented in protege 3.1.展开更多
In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects...In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.展开更多
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e...In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.展开更多
To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capab...To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval.展开更多
In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, firs...In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.展开更多
View-based 3D model retrieval methods are attracted intensive research attentions due to the high expression and stable features. In the paper, the bag-of-words (BOW) standardization based SIFT feature were extracted ...View-based 3D model retrieval methods are attracted intensive research attentions due to the high expression and stable features. In the paper, the bag-of-words (BOW) standardization based SIFT feature were extracted from three projection views of a 3D model, and then the distributed K-means cluster algorithm based on a Hadoop platform was employed to compute feature vectors and cluster 3D models. In order to get precise initial cluster center, the maximum and minimum principle based Canopy algorithm was also presented. The similarity of models was determined by the distance between the query model and each cluster center, and the cluster which nearest to the query model will be return as retrieval results. The simulations indicated that the proposed method had good results in terms of 3D model retrieval accuracy and retrieval time efficiency.展开更多
Recently, 3D display technology, and content creation tools have been undergone rigorous development and as a result they have been widely adopted by home and professional users. 3D digital repositories are increasing...Recently, 3D display technology, and content creation tools have been undergone rigorous development and as a result they have been widely adopted by home and professional users. 3D digital repositories are increasing and becoming available ubiquitously. However, searching and visualizing 3D content remains a great challenge. In this paper, we propose and present the development of a novel approach for creating hypervideos, which ease the 3D content search and retrieval. It is called the dynamic hyperlinker for 3D content search and retrieval process. It advances 3D multimedia navigability and searchability by creating dynamic links for selectable and clickable objects in the video scene whilst the user consumes the 3D video clip. The proposed system involves 3D video processing, such as detecting/tracking clickable objects, annotating objects, and metadata engineering including 3D content descriptive protocol. Such system attracts the attention from both home and professional users and more specifically broadcasters and digital content providers. The experiment is conducted on full parallax holoscopic 3D videos “also known as integral images”.展开更多
Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has ...Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has provided precise surface deformation in the along-track(AT)direction.Integration of the InSAR and MAI methods enables precise measurement of the two-dimensional(2D)deformation from an interferometric pair;recently,the integration of ascending and descending pairs has allowed the observation of precise three-dimensional(3D)deformation.Precise 3D deformation measurement has been applied to better understand geological events such as earthquakes and volcanic eruptions.The surface deformation related to the 2016 Kumamoto earthquake was large and complex near the fault line;hence,precise 3D deformation retrieval had not yet been attempted.The objectives of this study were to①perform a feasibility test of precise 3D deformation retrieval in large and complex deformation areas through the integration of offset-based unwrapped and improved multiple-aperture SAR interferograms and②observe the 3D deformation field related to the 2016 Kumamoto earthquake,even near the fault lines.Two ascending pairs and one descending the Advanced Land Observing Satellite-2(ALOS-2)Phased Array-type L-band Synthetic Aperture Radar-2(PALSAR-2)pair were used for the 3D deformation retrieval.Eleven in situ Global Positioning System(GPS)measurements were used to validate the 3D deformation measurement accuracy.The achieved accuracy was approximately 2.96,3.75,and 2.86 cm in the east,north,and up directions,respectively.The results show the feasibility of precise 3D deformation measured through the integration of the improved methods,even in a case of large and complex deformation.展开更多
In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by u...In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy.展开更多
Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the pro...Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the problems of partial retrieval in the domain of computer graphics, vision, CAD, and multimedia. Unfortunately, in the literature, there is little comprehensive discussion on the state-of-the-art methods of partial shape retrieval. In this article we focus on reviewing the partial shape retrieval methods over the last decade, and help novices to grasp latest developments in this field. We first give the definition of partial retrieval and discuss its desirable capabilities. Secondly, we classify the existing methods on partial shape retrieval into three classes by several criteria, describe the main ideas and techniques for each class, and detailedly compare their advantages and limits. We also present several relevant 3D datasets and corresponding evaluation metrics, which are necessary for evaluating partial retrieval performance. Finally, we discuss possible research directions to address partial shape retrieval.展开更多
In this paper, a content based descriptor is pro- posed to retrieve 3D models, which employs histogram of local orientation (HLO) as a geometric property of the shape. The proposed 3D model descriptor scheme consist...In this paper, a content based descriptor is pro- posed to retrieve 3D models, which employs histogram of local orientation (HLO) as a geometric property of the shape. The proposed 3D model descriptor scheme consists of three steps. In the first step, Poisson equation is utilized to define a 3D model signature. Next, the local orientation is calculated for each voxel of the model using Hessian matrix. As the final step, a histogram-based 3D model descriptor is extracted by accumulating the values of the local orientation in bins. Due to efficiency of Poisson equation in describing the models with various structures, the proposed descriptor is capable of discriminating these models accurately. Since, the inner vox- els have a dominant contribution in the formation of the de- scriptor, sufficient robustness against noise can be achieved. This is because the noise mostly influences the boundary vox- els. Furthermore, we improve the retrieval performance us- ing support vector machine based one-shot score (SVM-OSS) similarity measure, which is more efficient than the conven- tional methods to compute the distance of feature vectors. The rotation normalization is performed employing the prin- cipal component analysis. To demonstrate the applicability of HLO, we implement experimental evaluations of precision- recall curve on ESB, PSB and WM-SHREC databases of 3D models. Experimental results validate the effectiveness of the proposed descriptor compared to some current methods.展开更多
3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fron...3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility.展开更多
With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of...With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches.展开更多
View-based 3-D object retrieval has become an emerging topic in recent years,especially with the fast development of visual content acquisition devices,such as mobile phones with cameras.Extensive research efforts hav...View-based 3-D object retrieval has become an emerging topic in recent years,especially with the fast development of visual content acquisition devices,such as mobile phones with cameras.Extensive research efforts have been dedicated to this task,while it is still difficult to measure the relevance between two objects with multiple views.In recent years,learning-based methods have been investigated in view-based 3-D object retrieval,such as graph-based learning.It is noted that the graph-based methods suffer from the high computational cost from the graph construction and the corresponding learning process.In this paper,we introduce a general framework to accelerate the learning-based view-based 3-D object matching in large scale data.Given a query object Q and one object O from a 3-D dataset D,the first step is to extract a small set of candidate relevant 3-D objects for object O.Then multiple hypergraphs can be constructed based on this small set of 3-D objects and the learning on the fused hypergraph is conducted to generate the relevance between Q and O,which can be further used in the retrieval procedure.Experiments demonstrate the effectiveness of the proposed framework.展开更多
In order to high reality and efficiency, the technique computer animation. With the development of motion capture, a of motion capture (MoCap) has been widely used in the field of large amount of motion capture data...In order to high reality and efficiency, the technique computer animation. With the development of motion capture, a of motion capture (MoCap) has been widely used in the field of large amount of motion capture databases are available and this is significant for the reuse of motion data. But due to the high degree of freedoms and high capture frequency, the dimension of the mo- tion capture data is usually very high and this will lead to a low efficiency in data processing. So how to process the high dimension data and design an efficient and effective retrieval approach has become a challenge which we can't ignore. In this paper, first we lay out some problems about the key techniques in motion capture data processing. Then the existing approaches are analyzed and sum- marized. At last, some future work is proposed.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 51175287)National Science and Technology Major Project(Grant No. 2011ZX02403)
文摘Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.
基金National Natural Science Foundation of China (No.60873094)
文摘The goal of the research on ontology framework for content-based 3D model retrieval is to develop a rich set of 3D model semantic representation so that both humans and machines can generate and understand model descriptions and processing for fast efficient retrieval from model collections. The purpose of ontology development for content-based 3D model retrieval is intended to describe model information regardless of storage, feature extraction and creation. The ontology includes the information on media features, low level visual descriptors, non media features of 3D model and their relationships. It is implemented in protege 3.1.
基金the National Basic Research Program (973) of China (No. 2004CB719401)the National Research Foundation for the Doctoral Program of Higher Education of China (No.20060003060)
文摘In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51075083)
文摘In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.
基金The Basic Research of COSTIND,China (No.D0420060521)
文摘To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval.
基金Project (No. 60573146) supported by the National Natural Science Foundation of China
文摘In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.
文摘View-based 3D model retrieval methods are attracted intensive research attentions due to the high expression and stable features. In the paper, the bag-of-words (BOW) standardization based SIFT feature were extracted from three projection views of a 3D model, and then the distributed K-means cluster algorithm based on a Hadoop platform was employed to compute feature vectors and cluster 3D models. In order to get precise initial cluster center, the maximum and minimum principle based Canopy algorithm was also presented. The similarity of models was determined by the distance between the query model and each cluster center, and the cluster which nearest to the query model will be return as retrieval results. The simulations indicated that the proposed method had good results in terms of 3D model retrieval accuracy and retrieval time efficiency.
文摘Recently, 3D display technology, and content creation tools have been undergone rigorous development and as a result they have been widely adopted by home and professional users. 3D digital repositories are increasing and becoming available ubiquitously. However, searching and visualizing 3D content remains a great challenge. In this paper, we propose and present the development of a novel approach for creating hypervideos, which ease the 3D content search and retrieval. It is called the dynamic hyperlinker for 3D content search and retrieval process. It advances 3D multimedia navigability and searchability by creating dynamic links for selectable and clickable objects in the video scene whilst the user consumes the 3D video clip. The proposed system involves 3D video processing, such as detecting/tracking clickable objects, annotating objects, and metadata engineering including 3D content descriptive protocol. Such system attracts the attention from both home and professional users and more specifically broadcasters and digital content providers. The experiment is conducted on full parallax holoscopic 3D videos “also known as integral images”.
基金This study was funded by the Korea Meteorological Administration Research and Development Program(KMI2017-9060)the National Research Foundation of Korea funded by the Korea government(NRF-2018M1A3A3A02066008)+1 种基金In addition,the ALOS-2 PALSAR-2 data used in this study are owned by the Japan Aerospace Exploration Agency(JAXA)and were provided through the JAXA’s ALOS-2 research program(RA4,PI No.1412)The GPS data were provided by the Geospatial Information Authority of Japan.
文摘Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has provided precise surface deformation in the along-track(AT)direction.Integration of the InSAR and MAI methods enables precise measurement of the two-dimensional(2D)deformation from an interferometric pair;recently,the integration of ascending and descending pairs has allowed the observation of precise three-dimensional(3D)deformation.Precise 3D deformation measurement has been applied to better understand geological events such as earthquakes and volcanic eruptions.The surface deformation related to the 2016 Kumamoto earthquake was large and complex near the fault line;hence,precise 3D deformation retrieval had not yet been attempted.The objectives of this study were to①perform a feasibility test of precise 3D deformation retrieval in large and complex deformation areas through the integration of offset-based unwrapped and improved multiple-aperture SAR interferograms and②observe the 3D deformation field related to the 2016 Kumamoto earthquake,even near the fault lines.Two ascending pairs and one descending the Advanced Land Observing Satellite-2(ALOS-2)Phased Array-type L-band Synthetic Aperture Radar-2(PALSAR-2)pair were used for the 3D deformation retrieval.Eleven in situ Global Positioning System(GPS)measurements were used to validate the 3D deformation measurement accuracy.The achieved accuracy was approximately 2.96,3.75,and 2.86 cm in the east,north,and up directions,respectively.The results show the feasibility of precise 3D deformation measured through the integration of the improved methods,even in a case of large and complex deformation.
基金supported in part by“MOST”under Grants No.102-2632-E-216-001-MY3 and No.104-2221-E-216-010-MY2
文摘In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy.
基金supported by the National Natural Science Foundation of China under Grant Nos. 61003137, 61202185, 61005018,91120005the Fundamental Fund of Research of Northwestern Polytechnical University of China under Grant Nos. JC201202,JC201220,JC20120237+2 种基金the Natural Science Foundation of Shaanxi Province of China under Grant No. 2012JQ8037the Open Fund from the State Key Lab of CAD&CG of Zhejiang University of Chinathe Program for New Century Excellent Talents in University of China under grant No. NCET-10-0079
文摘Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the problems of partial retrieval in the domain of computer graphics, vision, CAD, and multimedia. Unfortunately, in the literature, there is little comprehensive discussion on the state-of-the-art methods of partial shape retrieval. In this article we focus on reviewing the partial shape retrieval methods over the last decade, and help novices to grasp latest developments in this field. We first give the definition of partial retrieval and discuss its desirable capabilities. Secondly, we classify the existing methods on partial shape retrieval into three classes by several criteria, describe the main ideas and techniques for each class, and detailedly compare their advantages and limits. We also present several relevant 3D datasets and corresponding evaluation metrics, which are necessary for evaluating partial retrieval performance. Finally, we discuss possible research directions to address partial shape retrieval.
文摘In this paper, a content based descriptor is pro- posed to retrieve 3D models, which employs histogram of local orientation (HLO) as a geometric property of the shape. The proposed 3D model descriptor scheme consists of three steps. In the first step, Poisson equation is utilized to define a 3D model signature. Next, the local orientation is calculated for each voxel of the model using Hessian matrix. As the final step, a histogram-based 3D model descriptor is extracted by accumulating the values of the local orientation in bins. Due to efficiency of Poisson equation in describing the models with various structures, the proposed descriptor is capable of discriminating these models accurately. Since, the inner vox- els have a dominant contribution in the formation of the de- scriptor, sufficient robustness against noise can be achieved. This is because the noise mostly influences the boundary vox- els. Furthermore, we improve the retrieval performance us- ing support vector machine based one-shot score (SVM-OSS) similarity measure, which is more efficient than the conven- tional methods to compute the distance of feature vectors. The rotation normalization is performed employing the prin- cipal component analysis. To demonstrate the applicability of HLO, we implement experimental evaluations of precision- recall curve on ESB, PSB and WM-SHREC databases of 3D models. Experimental results validate the effectiveness of the proposed descriptor compared to some current methods.
基金The authors would like to thank Zhang Dongdong for his great help in experiments. This work was supported by the National Natural Science Foundation of China (Grant No. 61602324), the Scientific Research Project of Beijing Educational Committeen (KM201710028018), the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (BUAA-VR-17KF-12) and Beijing Advanced Innovation Center for Imaging Technology (BAlCIT-2016004).
文摘3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility.
基金supported in part by the Fundamental Research Funds for the Central Universities in China (No. 2100219066)the Key Fundamental Research Funds for the Central Universities in China (No. 0200219153)
文摘With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches.
文摘View-based 3-D object retrieval has become an emerging topic in recent years,especially with the fast development of visual content acquisition devices,such as mobile phones with cameras.Extensive research efforts have been dedicated to this task,while it is still difficult to measure the relevance between two objects with multiple views.In recent years,learning-based methods have been investigated in view-based 3-D object retrieval,such as graph-based learning.It is noted that the graph-based methods suffer from the high computational cost from the graph construction and the corresponding learning process.In this paper,we introduce a general framework to accelerate the learning-based view-based 3-D object matching in large scale data.Given a query object Q and one object O from a 3-D dataset D,the first step is to extract a small set of candidate relevant 3-D objects for object O.Then multiple hypergraphs can be constructed based on this small set of 3-D objects and the learning on the fused hypergraph is conducted to generate the relevance between Q and O,which can be further used in the retrieval procedure.Experiments demonstrate the effectiveness of the proposed framework.
基金Supported by the National Natural Science Foundation of China(No.60875046)by Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1109)+5 种基金the Key Project of Chinese Ministry of Education(No.209029)the Program for Liaoning Excellent Talents in University(No.LR201003)the Program for Liaoning Science and Technology Research in University(No.LS2010008,2009S008,2009S009,LS2010179)the Program for Liaoning Innovative Research Team in University(Nos.2009T005,LT2010005,LT2011018)Natural Science Foundation of Liaoning Province(201102008)by"Liaoning BaiQianWan Talents Program(2010921010,2011921009)"
文摘In order to high reality and efficiency, the technique computer animation. With the development of motion capture, a of motion capture (MoCap) has been widely used in the field of large amount of motion capture databases are available and this is significant for the reuse of motion data. But due to the high degree of freedoms and high capture frequency, the dimension of the mo- tion capture data is usually very high and this will lead to a low efficiency in data processing. So how to process the high dimension data and design an efficient and effective retrieval approach has become a challenge which we can't ignore. In this paper, first we lay out some problems about the key techniques in motion capture data processing. Then the existing approaches are analyzed and sum- marized. At last, some future work is proposed.