As commercial motion capture systems are widely used, more and more 3D motion libraries become available, reinforcing the demand for efficient indexing and retrieving methods. Usually, the user will only have a sketch...As commercial motion capture systems are widely used, more and more 3D motion libraries become available, reinforcing the demand for efficient indexing and retrieving methods. Usually, the user will only have a sketchy idea of which kind of motion to look for in the motion database. As a result, how to clearly describe the user’s demands is a bottleneck for motion retrieval system. This paper presented a framework that can handle this problem effectively for motion retrieval. This content-based retrieval system supports two kinds of query modes: textual query mode and query-by-example mode. In both query modes, user’s input is translated into scene description language first, which can be processed by the system efficiently. By using various kinds of qualitative features and adaptive segments of motion capture data stream, indexing and retrieval methods are carried out at the segment level rather than at the frame level, making them quite efficient. Some experimental examples are given to demonstrate the effectiveness and efficiency of the proposed algorithms.展开更多
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ...In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.展开更多
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color His...The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems.展开更多
This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hu...This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat...To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.展开更多
AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classificat...AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.METHODS:Breast density is characterized by image texture using singular value decomposition(SVD) and histograms.Pattern similarity is computed by a support vector machine(SVM) to separate the four BI-RADS tissue categories.The crucial number of remaining singular values is varied(SVD),and linear,radial,and polynomial kernels are investigated(SVM).The system is supported by a large reference database for training and evaluation.Experiments are based on 5-fold cross validation.RESULTS:Adopted from DDSM,MIAS,LLNL,and RWTH datasets,the reference database is composed of over 10000 various mammograms with unified and reliable ground truth.An average precision of 82.14% is obtained using 25 singular values(SVD),polynomial kernel and the one-against-one(SVM).CONCLUSION:Breast density characterization using SVD allied with SVM for image retrieval enable the development of a CBIR system that can effectively aid radiologists in their diagnosis.展开更多
We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based...We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based image retrieval. It adopts the Browser/Server (B/S) mode. The users could visit our system though web pages. It uses the symmetrical color-spatial features (SCSF) to represent the content of an image. The SCSF is effective and efficient for image matching because it is independent of image distortion such as rotation and flip as well as it increases the matching accuracy. The SCSF was organized by M-tree, which could speedup the searching procedure. Our experiments show that the image matching is quickly and efficiently with the use of SCSF. And with the support of several retrieval servers, the system could respond to many users at mean time. Key words content-based image retrieval - cluster architecture - color-spatial feature - B/S mode - task parallel - WWW - Internet CLC number TP391 Foundation item: Supported by the National Natural Science Foundation of China (60173058)Biography: ZHOU Bing (1975-), male, Ph. D candidate, reseach direction: data mining, content-based image retrieval.展开更多
In this paper, we propose a parallel computing technique for content-based image retrieval (CBIR) system. This technique is mainly used for single node with multi-core processor, which is different from those based ...In this paper, we propose a parallel computing technique for content-based image retrieval (CBIR) system. This technique is mainly used for single node with multi-core processor, which is different from those based on cluster or network computing architecture. Due to its specific applications (such as medical image processing) and the harsh terms of hardware resource requirement, the CBIR system has been prevented from being widely used. With the increasing volume of the image database, the widespread use of multi-core processors, and the requirement of the retrieval accuracy and speed, we need to achieve a retrieval strategy which is based on multi-core processor to make the retrieval faster and more convenient than before. Experimental results demonstrate that this parallel architecture can significantly improve the performance of retrieval system. In addition, we also propose an efficient parallel technique with the combinations of the cluster and the multi-core techniques, which is supposed to gear to the new trend of the cloud computing.展开更多
In order to retrieve a similarly look trademark from a large trademark database, an automatic content based trademark retrieval method using block hit statistic and comer Delaunay Triangulation features was proposed. ...In order to retrieve a similarly look trademark from a large trademark database, an automatic content based trademark retrieval method using block hit statistic and comer Delaunay Triangulation features was proposed. The block features are derived from the hit statistic on a series of concentric ellipse. The comers are detected based on an enhanced SUSAN (Smallest Univalue Segment Assimilating Nucleus) algorithm and the Delaunay Triangulation of comer points are used as the comer features. Experiments have been conducted on the MPEG-7 Core Experiment CE-Shape-1 database of 1 400 images and a trademark database of 2 000 images. The retrieval results are very encouraging.展开更多
In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts...In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ...展开更多
This paper presents a novel efficient semantic image classification algorithm for high-level feature indexing of high-dimension image database. Experiments show that the algorithm performs well. The size of the train ...This paper presents a novel efficient semantic image classification algorithm for high-level feature indexing of high-dimension image database. Experiments show that the algorithm performs well. The size of the train set and the test set is 7 537 and 5 000 respectively. Based on this theory, another ground is built with 12,000 images, which are divided into three classes: city, landscape and person, the total result of the classifications is 88.92%, meanwhile, some preliminary results are presented for image understanding based on semantic image classification and low level features. The groundtruth for the experiments is built with the images from Corel database, photos and some famous face databases.展开更多
The problem considered in this paper is how to detect the degree of similarity in the content of digital images useful in image retrieval,i.e.,to what extent is the content of a query image similar to content of other...The problem considered in this paper is how to detect the degree of similarity in the content of digital images useful in image retrieval,i.e.,to what extent is the content of a query image similar to content of other images.The solution to this problem results from the detection of subsets that are rough sets contained in covers of digital images determined by perceptual tolerance relations(PTRs).Such relations are defined within the context of perceptual representative spaces that hearken back to work by J.H.Poincare on representative spaces as models of physical continua.Classes determined by a PTR provide content useful in content-based image retrieval(CBIR).In addition,tolerance classes provide a means of determining when subsets of image covers are tolerance rough sets(TRSs).It is the nearness of TRSs present in image tolerance spaces that provide a promising approach to CBIR,especially in cases such as satellite images or aircraft identification where there are subtle differences between pairs of digital images,making it difficult to quantify the similarities between such images.The contribution of this article is the introduction of the nearness of tolerance rough sets as an effective means of measuring digital image similarities and,as a significant consequence,successfully carrying out CBIR.展开更多
The goal of the research on ontology framework for content-based 3D model retrieval is to develop a rich set of 3D model semantic representation so that both humans and machines can generate and understand model descr...The goal of the research on ontology framework for content-based 3D model retrieval is to develop a rich set of 3D model semantic representation so that both humans and machines can generate and understand model descriptions and processing for fast efficient retrieval from model collections. The purpose of ontology development for content-based 3D model retrieval is intended to describe model information regardless of storage, feature extraction and creation. The ontology includes the information on media features, low level visual descriptors, non media features of 3D model and their relationships. It is implemented in protege 3.1.展开更多
<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the u...<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and colour similarity. Retrieving images based on the contents which are colour, texture, and shape is called content-based image retrieval (CBIR). This paper discusses and describes about the colour features technique for image retrieval systems. Several colour features technique and algorithms produced by the previous researcher are used to calculate the similarity between extracted features. This paper also describes about the specific technique about the colour basis features and combined features (hybrid techniques) between colour and shape features. </div>展开更多
Cloth image retrieval in E-Commerce is a challenging task. In this paper, we propose an effective approach to solve this problem. Our work chooses three features for retrieval: (1) description (2) category (3) color f...Cloth image retrieval in E-Commerce is a challenging task. In this paper, we propose an effective approach to solve this problem. Our work chooses three features for retrieval: (1) description (2) category (3) color features. It can handle clothes with multiple colors, complex background, and model disturbances. To evaluate the proposed method, we collect a set of women cloth images from Amazon.com. Results reported here demonstrate the robustness and effectiveness of our retrieval method.展开更多
Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number...Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively.展开更多
To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep ha...To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.展开更多
Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidd...Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidden Markov model) learning. Due to the high dimensionality of motion’s features, Isomap nonlinear dimension reduction is used for training data of ensemble HMM learning. For handling new motion data, Isomap is generalized based on the estimation of underlying eigen- functions. Then each action class is learned with one HMM. Since ensemble learning can effectively enhance supervised learning, ensembles of weak HMM learners are built. Experiment results showed that the approaches are effective for motion data recog- nition and retrieval.展开更多
基金National Natural Science Foundation of Chi-na (No. 60573147, No. 60373070) Mi-crosoft Research Asia (Project-2004-Image-01)
文摘As commercial motion capture systems are widely used, more and more 3D motion libraries become available, reinforcing the demand for efficient indexing and retrieving methods. Usually, the user will only have a sketchy idea of which kind of motion to look for in the motion database. As a result, how to clearly describe the user’s demands is a bottleneck for motion retrieval system. This paper presented a framework that can handle this problem effectively for motion retrieval. This content-based retrieval system supports two kinds of query modes: textual query mode and query-by-example mode. In both query modes, user’s input is translated into scene description language first, which can be processed by the system efficiently. By using various kinds of qualitative features and adaptive segments of motion capture data stream, indexing and retrieval methods are carried out at the segment level rather than at the frame level, making them quite efficient. Some experimental examples are given to demonstrate the effectiveness and efficiency of the proposed algorithms.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2002AA413420).
文摘In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
基金This research was supported by the National Natural Science Foundation of China(Grant Number:61702310)the National Natural Science Foundation of China(Grant Number:61401260).
文摘The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems.
基金Supported by the Project of Science & Technology Depart ment of Shanghai (No.055115001)
文摘This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
文摘To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.
基金Supported by CNPq-Brazil,Grants 306193/2007-8,471518/ 2007-7,307373/2006-1 and 484893/2007-6,by FAPEMIG,Grant PPM 347/08,and by CAPESThe IRMA project is funded by the German Research Foundation(DFG),Le 1108/4 and Le 1108/9
文摘AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.METHODS:Breast density is characterized by image texture using singular value decomposition(SVD) and histograms.Pattern similarity is computed by a support vector machine(SVM) to separate the four BI-RADS tissue categories.The crucial number of remaining singular values is varied(SVD),and linear,radial,and polynomial kernels are investigated(SVM).The system is supported by a large reference database for training and evaluation.Experiments are based on 5-fold cross validation.RESULTS:Adopted from DDSM,MIAS,LLNL,and RWTH datasets,the reference database is composed of over 10000 various mammograms with unified and reliable ground truth.An average precision of 82.14% is obtained using 25 singular values(SVD),polynomial kernel and the one-against-one(SVM).CONCLUSION:Breast density characterization using SVD allied with SVM for image retrieval enable the development of a CBIR system that can effectively aid radiologists in their diagnosis.
文摘We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based image retrieval. It adopts the Browser/Server (B/S) mode. The users could visit our system though web pages. It uses the symmetrical color-spatial features (SCSF) to represent the content of an image. The SCSF is effective and efficient for image matching because it is independent of image distortion such as rotation and flip as well as it increases the matching accuracy. The SCSF was organized by M-tree, which could speedup the searching procedure. Our experiments show that the image matching is quickly and efficiently with the use of SCSF. And with the support of several retrieval servers, the system could respond to many users at mean time. Key words content-based image retrieval - cluster architecture - color-spatial feature - B/S mode - task parallel - WWW - Internet CLC number TP391 Foundation item: Supported by the National Natural Science Foundation of China (60173058)Biography: ZHOU Bing (1975-), male, Ph. D candidate, reseach direction: data mining, content-based image retrieval.
基金supported by the Natural Science Foundation of Shanghai (Grant No.08ZR1408200)the Shanghai Leading Academic Discipline Project (Grant No.J50103)the Open Project Program of the National Laboratory of Pattern Recognition
文摘In this paper, we propose a parallel computing technique for content-based image retrieval (CBIR) system. This technique is mainly used for single node with multi-core processor, which is different from those based on cluster or network computing architecture. Due to its specific applications (such as medical image processing) and the harsh terms of hardware resource requirement, the CBIR system has been prevented from being widely used. With the increasing volume of the image database, the widespread use of multi-core processors, and the requirement of the retrieval accuracy and speed, we need to achieve a retrieval strategy which is based on multi-core processor to make the retrieval faster and more convenient than before. Experimental results demonstrate that this parallel architecture can significantly improve the performance of retrieval system. In addition, we also propose an efficient parallel technique with the combinations of the cluster and the multi-core techniques, which is supposed to gear to the new trend of the cloud computing.
基金Supported by the National High Technology Research and Development Program of China(863 Program) (2006AA01Z129)the 985-2 Project (0000-X07204) of Xiamen University
文摘In order to retrieve a similarly look trademark from a large trademark database, an automatic content based trademark retrieval method using block hit statistic and comer Delaunay Triangulation features was proposed. The block features are derived from the hit statistic on a series of concentric ellipse. The comers are detected based on an enhanced SUSAN (Smallest Univalue Segment Assimilating Nucleus) algorithm and the Delaunay Triangulation of comer points are used as the comer features. Experiments have been conducted on the MPEG-7 Core Experiment CE-Shape-1 database of 1 400 images and a trademark database of 2 000 images. The retrieval results are very encouraging.
文摘In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ...
文摘This paper presents a novel efficient semantic image classification algorithm for high-level feature indexing of high-dimension image database. Experiments show that the algorithm performs well. The size of the train set and the test set is 7 537 and 5 000 respectively. Based on this theory, another ground is built with 12,000 images, which are divided into three classes: city, landscape and person, the total result of the classifications is 88.92%, meanwhile, some preliminary results are presented for image understanding based on semantic image classification and low level features. The groundtruth for the experiments is built with the images from Corel database, photos and some famous face databases.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) research grants 194376 and 185986Manitoba Centre of Excellence Fund(MCEF) grant and Canadian Network Centre of Excellence(NCE) and Canadian Arthritis Network(CAN) grant SRI-BIO-05.
文摘The problem considered in this paper is how to detect the degree of similarity in the content of digital images useful in image retrieval,i.e.,to what extent is the content of a query image similar to content of other images.The solution to this problem results from the detection of subsets that are rough sets contained in covers of digital images determined by perceptual tolerance relations(PTRs).Such relations are defined within the context of perceptual representative spaces that hearken back to work by J.H.Poincare on representative spaces as models of physical continua.Classes determined by a PTR provide content useful in content-based image retrieval(CBIR).In addition,tolerance classes provide a means of determining when subsets of image covers are tolerance rough sets(TRSs).It is the nearness of TRSs present in image tolerance spaces that provide a promising approach to CBIR,especially in cases such as satellite images or aircraft identification where there are subtle differences between pairs of digital images,making it difficult to quantify the similarities between such images.The contribution of this article is the introduction of the nearness of tolerance rough sets as an effective means of measuring digital image similarities and,as a significant consequence,successfully carrying out CBIR.
基金National Natural Science Foundation of China (No.60873094)
文摘The goal of the research on ontology framework for content-based 3D model retrieval is to develop a rich set of 3D model semantic representation so that both humans and machines can generate and understand model descriptions and processing for fast efficient retrieval from model collections. The purpose of ontology development for content-based 3D model retrieval is intended to describe model information regardless of storage, feature extraction and creation. The ontology includes the information on media features, low level visual descriptors, non media features of 3D model and their relationships. It is implemented in protege 3.1.
文摘<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and colour similarity. Retrieving images based on the contents which are colour, texture, and shape is called content-based image retrieval (CBIR). This paper discusses and describes about the colour features technique for image retrieval systems. Several colour features technique and algorithms produced by the previous researcher are used to calculate the similarity between extracted features. This paper also describes about the specific technique about the colour basis features and combined features (hybrid techniques) between colour and shape features. </div>
文摘Cloth image retrieval in E-Commerce is a challenging task. In this paper, we propose an effective approach to solve this problem. Our work chooses three features for retrieval: (1) description (2) category (3) color features. It can handle clothes with multiple colors, complex background, and model disturbances. To evaluate the proposed method, we collect a set of women cloth images from Amazon.com. Results reported here demonstrate the robustness and effectiveness of our retrieval method.
基金the Project of Introducing Urgently Needed Talents in Key Supporting Regions of Shandong Province,China(No.SDJQP20221805)。
文摘Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively.
基金supported by the National Natural Science Foundation of China(No.61862041).
文摘To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.
基金Project supported by the National Natural Science Foundation of China (Nos. 60533090 and 60525108), the National Basic Research Program (973) of China (No. 2002CB312101), and the Science and Technology Project of Zhejiang Province (Nos. 2005C13032 and 2005C11001-05), China
文摘Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidden Markov model) learning. Due to the high dimensionality of motion’s features, Isomap nonlinear dimension reduction is used for training data of ensemble HMM learning. For handling new motion data, Isomap is generalized based on the estimation of underlying eigen- functions. Then each action class is learned with one HMM. Since ensemble learning can effectively enhance supervised learning, ensembles of weak HMM learners are built. Experiment results showed that the approaches are effective for motion data recog- nition and retrieval.