期刊文献+
共找到278篇文章
< 1 2 14 >
每页显示 20 50 100
Source Camera Identification Algorithm Based on Multi-Scale Feature Fusion
1
作者 Jianfeng Lu Caijin Li +2 位作者 Xiangye Huang Chen Cui Mahmoud Emam 《Computers, Materials & Continua》 SCIE EI 2024年第8期3047-3065,共19页
The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.Howeve... The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach. 展开更多
关键词 Source camera identification camera forensics convolutional neural network feature fusion transformer block graph convolutional network
下载PDF
Application of multiple attributes fusion technology in the Su-14 Well Block 被引量:2
2
作者 王兴建 胡光岷 曹俊兴 《Applied Geophysics》 SCIE CSCD 2010年第3期257-264,293,共9页
In this study area the geological conditions are complicated and the effective sandstone is very heterogeneous.The sandstones are thin and lateral and vertical variations are large.We introduce multi-attribute fusion ... In this study area the geological conditions are complicated and the effective sandstone is very heterogeneous.The sandstones are thin and lateral and vertical variations are large.We introduce multi-attribute fusion technology based on pre-stack seismic data, pre-stack P-and S-wave inversion results,and post-stack attributes.This method not only can keep the fluid information contained in pre-stack seismic data but also make use of the high SNR characteristics of post-stack data.First,we use a one-step recursive method to get the optimal attribute combination from a number of attributes.Second,we use a probabilistic neural network method to train the nonlinear relationship between log curves and seismic attributes and then use the trained samples to find the natural gamma ray distribution in the Su-14 well block and improve the resolution of seismic data.Finally,we predict the effective reservoir distribution in the Su-14 well block. 展开更多
关键词 multiple attributes fusion neural network interactive validation Su-14 well block
下载PDF
Multi-focus image fusion based on block matching in 3D transform domain 被引量:5
3
作者 YANG Dongsheng HU Shaohai +2 位作者 LIU Shuaiqi MA Xiaole SUN Yuchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期415-428,共14页
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ... Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods. 展开更多
关键词 image fusion block matching 3D transform block-matching and 3D(BM3D) non-subsampled Shearlet transform(NSST)
下载PDF
Effects of low-intensity pulsed ultrasound stimulation on porous hydroxyapatite blocks for posterolateral fusion of lumbar spine in rabbits 被引量:2
4
作者 卓祥龙 吕红斌 +4 位作者 徐大启 刘彬 王锡阳 张莹 胡建中 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1921-1927,共7页
he effects of porous hydroxyapatite blocks(PHABs) and an adjunct low-intensity pulsed ultrasound stimulation(LIPUS) on the fusion rate in a rabbit spinal posterolateral fusion(PLF) model were evaluated.Twenty ra... he effects of porous hydroxyapatite blocks(PHABs) and an adjunct low-intensity pulsed ultrasound stimulation(LIPUS) on the fusion rate in a rabbit spinal posterolateral fusion(PLF) model were evaluated.Twenty rabbits underwent PLF with autograft and PHABs were randomly assigned to two groups:treated group with 20 min LIPUS daily and untreated control group for 4 weeks until euthanasia.The fused motion segments were subjected to manual palpation,gross observation,and radiographic investigation before histomorphologic and scanning electron microscopic analyses.Statistical differences between the LIPUS group and the control group are found in the fusion rate,bone density gray scale,trabecular bone formation,osteoblast-like cells,chondrocytes and positive expression of BMP-2 and TGF-β1 in the junction zone(significance level p〈0.05).The results suggest that LIPUS can increase fusion rates and accelerate bone in-growth into PHAB.Hence,PHAB and LIPUS may be used together to increase fusion rates in a rabbit spinal fusion model with a promising extension to human application. 展开更多
关键词 low-intensity pulsed ultrasound stimulation lumbar posterolateral fusion porous hydroxyapatite blocks
下载PDF
A Novel Fusion System Based on Iris and Ear Biometrics for E-exams
5
作者 S.A.Shaban Hosnia M.M.Ahmed D.L.Elsheweikh 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3295-3315,共21页
With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear an... With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security,particularly with wearing a face mask as a precaution against the new coronavirus epidemic.This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations(E-exams)during the COVID-19 pandemic.The proposed system comprises four steps.Thefirst step is image preprocessing,which includes enhancing,segmenting,and extracting the regions of interest.The second step is feature extraction,where the Haralick texture and shape methods are used to extract the features of ear images,whereas Tamura texture and color histogram methods are used to extract the features of iris images.The third step is feature fusion,where the extracted features of the ear and iris images are combined into one sequential fused vector.The fourth step is the matching,which is executed using the City Block Dis-tance(CTB)for student identification.Thefindings of the study indicate that the system’s recognition accuracy is 97%,with a 2%False Acceptance Rate(FAR),a 4%False Rejection Rate(FRR),a 94%Correct Recognition Rate(CRR),and a 96%Genuine Acceptance Rate(GAR).In addition,the proposed recognition sys-tem achieved higher accuracy than other related systems. 展开更多
关键词 City block distance(CTB) Covid-19 ear biometric e-exams feature-level fusion iris biometric multimodal biometric student’s identity
下载PDF
基于地球物理数据融合的大兴安岭中段东缘地壳结构研究 被引量:1
6
作者 赵维俊 秦涛 +6 位作者 李建平 肖锋 韩江涛 荣幸 郭宝东 葛欢 牛兴国 《地质学报》 EI CAS CSCD 北大核心 2024年第7期2064-2083,共20页
位于中亚造山带东段的兴安地块和松辽锡林浩特地块被晚古生代贺根山-黑河缝合带分开。随后,大兴安岭与松辽盆地被中新生代嫩江-八里罕断裂分开。在大兴安岭中段,这两构造带的位置及板块拼合时间尚不明确。为研究大兴安岭中段东缘重要构... 位于中亚造山带东段的兴安地块和松辽锡林浩特地块被晚古生代贺根山-黑河缝合带分开。随后,大兴安岭与松辽盆地被中新生代嫩江-八里罕断裂分开。在大兴安岭中段,这两构造带的位置及板块拼合时间尚不明确。为研究大兴安岭中段东缘重要构造断裂、构造单元及结晶基底属性特征,在扎兰屯-阿荣旗地区采集处理一条长60 km的重力、磁法和大地电磁数据,重新处理了1:20万扎兰屯幅、阿荣旗幅区域布格重力异常数据。通过多种地球物理数据融合,解译了7条重要断裂,其中庞家街断裂和红星断裂是控制贺根山-黑河缝合带的深大断裂。北西向阿伦河断裂为深大断裂,至少切割到中地壳。发现了两个中地壳低阻带,其中C2异常解释为贺根山-黑河缝合带。通过1:25万阿荣旗幅地质填图资料,证实了地球物理数据融合的推断结果,为大兴安岭中段东缘构造带演化研究提供了重要支撑。 展开更多
关键词 贺根山-黑河缝合带 嫩江断裂 兴安地块 松嫩地块 大地电磁 重力 磁法 数据融合
下载PDF
多间隔信息融合的母线保护电流互感器断线再开放策略 被引量:1
7
作者 陈琦 陈福锋 +4 位作者 唐治国 薛明军 刘凯祥 王胜 孙震宇 《电力自动化设备》 EI CSCD 北大核心 2024年第5期151-157,共7页
对于电流互感器(CT)断线后发生金属性故障的情景,现有母线保护采取的闭锁差动保护动作方式将会引发多个变电站停电。此外,当母线区内发生高阻接地故障时,现有母线保护判据可能会将其误判为CT断线故障,不利于电力系统的安全稳定运行。针... 对于电流互感器(CT)断线后发生金属性故障的情景,现有母线保护采取的闭锁差动保护动作方式将会引发多个变电站停电。此外,当母线区内发生高阻接地故障时,现有母线保护判据可能会将其误判为CT断线故障,不利于电力系统的安全稳定运行。针对这一问题,提出了一种母线保护CT断线再开放策略,该策略基于断线间隔与非断线间隔的零序电流变化量对负荷波动和故障进行区分,并基于非断线间隔的差流有效值和间隔失灵保护信息对区内外故障进行判别。实时数字仿真系统仿真结果验证了所提CT断线识别判据和再开放策略的正确性。 展开更多
关键词 电流互感器断线 多间隔信息融合 短路故障 电流互感器闭锁策略 母线保护
下载PDF
基于改进YOLOv5的遥感图像目标检测 被引量:3
8
作者 崔丽群 曹华维 《计算机工程》 CAS CSCD 北大核心 2024年第4期228-236,共9页
目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联... 目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联合注意力的多尺度特征增强网络,充分融合高低层特征,使特征层具有语义信息的同时包含丰富的细节信息,并在融合过程中利用设计的特征聚焦模块帮助模型选择关键特征,抑制无关信息。其次,使用感受野模块(RFB)对融合后的特征图进行更新,扩大特征图的感受野,减少特征信息损失。最后,对目标增加旋转角度,并采用圆形平滑标签将回归问题转化成分类问题,提高遥感目标定位的准确性。在用于航拍图像目标检测的大规模数据集(DOTA)上的实验结果表明,与YOLOv5算法相比,所提算法的交并比(Io U)为0.5和0.5~0.95时的平均精度均值(m AP@0.5和m AP@0.5∶0.95)分别提高了7.3和3.3个百分点,能够明显提高复杂背景下遥感图像目标的检测精度,并改善对遥感目标的漏检和误检情况。 展开更多
关键词 目标检测 遥感图像 特征融合 感受野模块 圆形平滑标签
下载PDF
基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法 被引量:1
9
作者 胡丹丹 张忠婷 《智能系统学报》 CSCD 北大核心 2024年第3期653-660,共8页
在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以... 在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以提升检测速度。其次,在特征融合网络中引入基于感受野模块(receptive field block,RFB)改进的RFB-s,通过模仿人类视觉感知,增强特征图的有效感受野区域,提高网络特征表达能力及对目标特征的可辨识性。最后,使用自适应空间特征融合(adaptively spatial feature fusion,ASFF)方式以提升PANet对多尺度特征融合的效果。实验结果表明,在PASCAL VOC数据集上,所提算法检测平均精度均值相较于YOLOv5s提高1.71个百分点,达到84.01%,在满足自动驾驶汽车实时性要求的前提下,在一定程度上减少目标检测时的误检及漏检情况,有效提升模型在复杂驾驶场景下的检测性能。 展开更多
关键词 YOLOv5s 自动驾驶 目标检测算法 深度可分离卷积 感受野模块 自适应空间特征融合 PANet 多尺度特征融合
下载PDF
基于CNN和Transformer并行编码的腹部多器官图像分割
10
作者 赵欣 李森 李智生 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1145-1154,共10页
针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transf... 针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm. 展开更多
关键词 多器官图像分割 分块Transformer 特征融合
下载PDF
基于残差卷积网络的多传感器融合永磁同步电机故障诊断
11
作者 邱建琪 沈佳晨 +2 位作者 史涔溦 史婷娜 李鸿杰 《电机与控制学报》 EI CSCD 北大核心 2024年第7期24-33,42,共11页
作为工业生产与日常生活的常见设备,永磁同步电机的故障诊断研究具有十分重要的意义。以永磁同步电机的匝间短路、退磁、轴承故障为诊断目标,提出一种新型的多传感器特征融合网络(MSFFN),结合多传感器融合技术与卷积神经网络实现永磁同... 作为工业生产与日常生活的常见设备,永磁同步电机的故障诊断研究具有十分重要的意义。以永磁同步电机的匝间短路、退磁、轴承故障为诊断目标,提出一种新型的多传感器特征融合网络(MSFFN),结合多传感器融合技术与卷积神经网络实现永磁同步电机的可靠故障诊断。网络采用2个带有残差模块的卷积神经网络,对输入的电流信号与振动信号并行提取隐藏特征,并设计一种中间特征融合模块(IFFM)有效融合电流和振动的各层隐藏特征,IFFM基于注意力机制对网络中的电流特征与振动特征进行筛选,自适应关注不同信号的内在相关特征,以实现更好的诊断效果。搭建了故障样机测试平台进行数据采集与实验验证,实验结果表明,提出方法具有更高的诊断准确率,同时在叠加了强噪声的条件下,具备更强的抗干扰能力。 展开更多
关键词 多传感器融合 卷积神经网络 中间特征融合模块 残差模块 永磁同步电机 故障诊断
下载PDF
用于单图像超分辨率的全局特征高效融合网络
12
作者 张玉波 田康 徐磊 《化工自动化及仪表》 CAS 2024年第2期207-214,300,共9页
现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅... 现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅层特征的逐级提取,并结合Transformer完成浅层与深层特征的融合利用。设计的对称自指导残差模块可以在浅层网络实现不同层间特征更具表达性的融合,同时提升网络的特征提取能力;特征互导融合模块可以增强网络对浅层特征与深层特征的融合能力,促进更多的特征信息参与到细图像重建过程。在Set5、Set14、BSD100和Urban100数据集上同近年来的经典网络(HR、CARN、IMDN、MADNet、LBNet)进行性能对比,实验结果表明:所提网络模型在峰值信噪比上有所提升,并在视觉直观对比中取得了较好的图像超分辨率效果,可改善超分辨率图像质量欠佳的问题。 展开更多
关键词 单图像超分辨率 全局特征高效融合网络模型 对称自指导残差模块 特征互导融合模块 深度学习
下载PDF
基于Ghost-SE-Res2Net的多模型融合语音唤醒词检测方法 被引量:1
13
作者 虞秋辰 周若华 袁庆升 《计算机工程》 CAS CSCD 北大核心 2024年第3期52-59,共8页
语音唤醒词检测(WWD)是语音交互中的关键技术,选择合适大小的检测窗对WWD性能的影响很大。提出一种新的多模型融合方法,通过融合小检测窗和大检测窗的检测结果来提高WWD性能。多模型融合方法包含两个分类模型,分别使用小检测窗和大检测... 语音唤醒词检测(WWD)是语音交互中的关键技术,选择合适大小的检测窗对WWD性能的影响很大。提出一种新的多模型融合方法,通过融合小检测窗和大检测窗的检测结果来提高WWD性能。多模型融合方法包含两个分类模型,分别使用小检测窗和大检测窗,均基于轻量化的挤压与激励残差网络(SE-Res2Net)模块,即GhostSE-Res2Net,SE-Res2Net结构的多尺度机制可显著提升WWD的能力。在Ghost-SE-Res2Net中,首先使用Ghost卷积替换SE-Res2Net中的普通卷积以降低模型参数量,然后使用注意力池化层替换SE-Res2Net中的全局平均池化层进一步提升WWD能力。在实际检测时融合连续3个小检测窗模型的检测结果的最大值和1个大检测窗模型的检测结果,来判断唤醒词是否被触发。在训练时引入困难样本挖掘算法,选择性地学习较难检测的唤醒词信息以提高分类模型的检测性能。在包含2个唤醒词的Mobvoi数据集上评估系统性能,实验结果表明,在每小时0.5次错误唤醒的情况下,该系统在2个唤醒词上的错误拒绝率分别为0.46%和0.43%,实现了与先进基线相似的性能,并且系统参数量比基线少31%。 展开更多
关键词 唤醒词检测 Ghost模块 Res2Net结构 错误拒绝 多模型融合
下载PDF
计及少样本的YOLOv5s轨枕掉块小目标缺陷检测方法研究 被引量:1
14
作者 张浩然 吴松荣 +3 位作者 周懿 邓鸿枥 张翰文 刘齐 《铁道标准设计》 北大核心 2024年第5期52-59,121,共9页
轨枕作为固定钢轨和扣件的重要轨道零部件之一,由于长期承受钢轨传来的各种作用力,其端部易出现掉块,造成轨道机械结构稳定性下降,故轨枕掉块缺陷检测对保证列车正常运行起到重要作用。针对轨枕掉块缺陷检测方法存在精度较低和缺陷样本... 轨枕作为固定钢轨和扣件的重要轨道零部件之一,由于长期承受钢轨传来的各种作用力,其端部易出现掉块,造成轨道机械结构稳定性下降,故轨枕掉块缺陷检测对保证列车正常运行起到重要作用。针对轨枕掉块缺陷检测方法存在精度较低和缺陷样本少的问题,提出一种计及少样本的YOLOv5s轨枕掉块小目标缺陷检测方法。首先,采用Copy-Pasting数据增强方法增加轨枕图像中掉块小目标数量,解决缺陷样本少的问题;其次,通过降低网络下采样倍数和删除大尺度检测层的方式改进YOLOv5s模型的多尺度检测层,提高轨枕掉块缺陷检测精度和速度;然后,将锚框之间的平均交并比作为距离量度改进K-means聚类算法,并使用遗传算法优化,重新匹配适合轨枕掉块缺陷检测的锚框;最后,使用跨尺度连接结构和双向特征加权融合模块改进YOLOv5s的特征融合结构,增强特征融合能力。实验结果表明,与原模型相比较,改进后的YOLOv5s模型平均精度达到94.1%,提高2.3%,检测速度达到93.3 fps,提高26.6 fps,能够准确且快速地识别轨枕掉块小目标缺陷。 展开更多
关键词 轨枕掉块 目标检测 YOLOv5s 数据增强 K-MEANS算法 多尺度特征融合
下载PDF
面向模糊医学图像边缘检测的卷积网络 被引量:1
15
作者 张陶界 周迪斌 +1 位作者 李金迪 余晨 《计算机系统应用》 2024年第2期198-206,共9页
考虑到传统边缘检测算法难以处理模糊的医学图像,提出一种基于深度学习的边缘检测网络ECENet.首先,本文网络基于CHRNet模型,对其最后两层进行剪枝,使模型更加高效和轻量化.其次,在网络的特征提取阶段加入注意力模块SKSAM,优化图像特征... 考虑到传统边缘检测算法难以处理模糊的医学图像,提出一种基于深度学习的边缘检测网络ECENet.首先,本文网络基于CHRNet模型,对其最后两层进行剪枝,使模型更加高效和轻量化.其次,在网络的特征提取阶段加入注意力模块SKSAM,优化图像特征的自适应提取,并降低噪声的影响.最后,在多尺度的网络输出上采用上下文感知融合块进行连接,帮助模型更好地理解图像的结构和语义信息.此外,综合考虑像素级别的准确性和边界的平滑性,优化了损失函数,为模型训练提供更好的梯度信号.实验结果表明:本文算法在最佳数据集规模(ODS)和最佳图像比例(OIS)指标分别提高到0.816和0.823;相关边缘指标参数显著提高,PSNR提高了16.8%,SSIM提高了37.6%. 展开更多
关键词 深度学习 边缘检测 卷积神经网络 注意力机制 上下文感知融合块
下载PDF
基于MLDCSAU-Net的视网膜图像血管分割算法 被引量:1
16
作者 汪恩惠 余艳梅 +2 位作者 杜佳成 庞博 陶青川 《现代计算机》 2024年第2期44-48,共5页
视网膜图像中血管的准确分割有助于对眼部病变的观察。为了提高视网膜图像血管分割精度和特征信息复用率以及精简模型,从网络框架入手,提出一种结合DCSAU-Net、多尺度信息融合模块以及Ghost模块的视网膜图像血管分割模型——MLDCSAU-Ne... 视网膜图像中血管的准确分割有助于对眼部病变的观察。为了提高视网膜图像血管分割精度和特征信息复用率以及精简模型,从网络框架入手,提出一种结合DCSAU-Net、多尺度信息融合模块以及Ghost模块的视网膜图像血管分割模型——MLDCSAU-Net模型。模型改进主要包括两个方面:首先在跳跃连接之后引入多尺度信息融合模块;其次编码器端使用Ghost模块替换编码器端的CSA模块。实验结果表明:多尺度信息融合模块对于模型的分割准确率有较大提升;Ghost模块有效减少了模型参数量。在STARE、CHASEDB1和HRF三个公开数据集中MLDCSAU-Net模型的准确率、查准率、查全率和F1分数均高于原模型,同时参数量更少。 展开更多
关键词 视网膜图像血管分割 多尺度信息融合模块 Ghost模块
下载PDF
基于图像块分解融合的水下标定图像增强
17
作者 常志文 王立忠 +4 位作者 梁晋 李壮壮 龚春园 巫志辉 徐建宁 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第4期810-822,共13页
针对水下视觉测量中相机标定采集的水下标定图像退化造成标志点信息缺损的问题,提出了一种基于图像块分解融合的水下标定图像增强算法。首先,针对水下标定图像光照不均匀造成图像去雾困难的问题,基于同态滤波实现图像分割并计算全局背... 针对水下视觉测量中相机标定采集的水下标定图像退化造成标志点信息缺损的问题,提出了一种基于图像块分解融合的水下标定图像增强算法。首先,针对水下标定图像光照不均匀造成图像去雾困难的问题,基于同态滤波实现图像分割并计算全局背景光强,以实现图像去雾。然后,针对水下图像去雾后仍然存在噪声、模糊、光照不均匀等问题,分别进行对比度增强与细节信息增强以获得两幅互补增强图像,将互补图像划分成多个图像块,将图像块分解为平均强度、信号强度和信号结构3个独立分量,3个分量分开融合并求解最终增强图像。最后,采用主客观评价及标志点检测实验评价水下标定图像增强后的质量。实验结果表明,本文方法的视觉效果及客观评价得分均高于UDCP、MSR及ACDC方法,浑浊度为7.6NTU、11.4NTU、15.7NTU、18.4NTU时,标志点检测数量分别提高了2.0%、2.3%、9.3%、21.2%。因此,本文方法可以有效提高水下标定图像质量,为水下视觉测量提供一种稳定可靠的水下标定图像增强方法。 展开更多
关键词 图像块分解融合 水下图像增强 图像去雾 标志点 浑浊度
下载PDF
边缘引导和拉普拉斯金字塔分解的古文本图像修复算法
18
作者 刘畅 张玲 何英豪 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第6期884-894,共11页
针对当前图像修复算法应用到古文本图像上时,出现纹理模糊或结构内容不完整的问题,提出边缘引导和拉普拉斯金字塔分解的古文本图像修复算法.首先利用边缘修复模块对古文本图像的边缘结构进行修复,重建缺损区域的边缘信息;然后利用预训... 针对当前图像修复算法应用到古文本图像上时,出现纹理模糊或结构内容不完整的问题,提出边缘引导和拉普拉斯金字塔分解的古文本图像修复算法.首先利用边缘修复模块对古文本图像的边缘结构进行修复,重建缺损区域的边缘信息;然后利用预训练的文字学习模块对局部缺损区域进行内容修复,得到一幅局部内容修复图像,并进行拉普拉斯分解;最后在拉普拉斯金字塔修复模块中,根据图像的低层和高层特征,利用内容修复模块对图像进行递进修复,内容修复模块中引入双交叉编码器和多尺度融合块,有助于获取更加有效的特征信息,生成纹理结构完整的图像修复结果.在古文本图像数据集的测试集上进行实验的结果表明,各项图像质量评估指标中,峰值信噪比为34.322 dB,结构相似性为0.970,均方根误差为5.203,验证了所提算法的有效性和可行性. 展开更多
关键词 图像修复 古文本图像 边缘图 双交叉编码器 多尺度融合块
下载PDF
基于注意力密集网络的伪彩色红外与可见光图像融合
19
作者 漆建环 倪波 +3 位作者 周晓彦 倪海彬 杨凌升 常建华 《国外电子测量技术》 2024年第5期84-91,共8页
针对现有红外与可见光图像融合算法中存在融合图像的纹理细节不清晰,红外信息和纹理细节的显示不平衡等问题,提出了一种基于注意力密集网络的伪彩色红外与可见光图像融合方法。首先对灰度的红外图像进行伪彩色处理再与彩色的可见光图像... 针对现有红外与可见光图像融合算法中存在融合图像的纹理细节不清晰,红外信息和纹理细节的显示不平衡等问题,提出了一种基于注意力密集网络的伪彩色红外与可见光图像融合方法。首先对灰度的红外图像进行伪彩色处理再与彩色的可见光图像组成多通道数据输入融合网络。其次,设计了一种由卷积层和带有注意力模块的密集连接块组成的生成器网络结构,关注源图像的关键信息,增强网络提取源图像信息的能力。最后,利用红外像素、可见光像素、可见光梯度和红外梯度构建内容损失函数,以保持融合图像中红外目标和纹理细节的平衡。与5种具有代表性的融合方法进行定性和定量比较。结果表明,该方法所获得融合图像的峰值信噪比、信息熵、平均梯度和互信息取得最优值,分别为31.6841、6.5581、6.0096、3.0960。定量以及定性结果证明所提融合方法使融合图像具有更为丰富的纹理细节以及良好的视觉效果。 展开更多
关键词 红外与可见光图像 图像融合 注意力模块 密集连接块
下载PDF
基于双分支边缘卷积融合网络的红外与可见光图像融合方法
20
作者 张鸿德 冯鑫 +1 位作者 杨杰铭 邱国航 《光子学报》 EI CAS CSCD 北大核心 2024年第8期287-298,共12页
提出一种基于双分支边缘卷积融合网络的红外与可见光图像融合方法。首先,提出一种改进的双分支边缘卷积结构,将图像包含的信息分解为公共信息和模态信息,并于每个分支引入边缘卷积块,更好的提取深度特征;然后在融合层引入卷积注意力模... 提出一种基于双分支边缘卷积融合网络的红外与可见光图像融合方法。首先,提出一种改进的双分支边缘卷积结构,将图像包含的信息分解为公共信息和模态信息,并于每个分支引入边缘卷积块,更好的提取深度特征;然后在融合层引入卷积注意力模块对模态特征进行增强;最后基于所本文编解码网络特点,提出一种重建损失结合融合损失的损失函数。经过大量的消融性实验和对比实验表明,本文方法能够很好的保留原图像中的公共信息和模态信息,并且相比目前最新的融合方法在主观和客观评价上都具有优秀的综合性能。 展开更多
关键词 红外与可见光图像融合 双分支边缘卷积融合网络 深度学习 边缘卷积块 卷积注意力
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部