期刊文献+
共找到257篇文章
< 1 2 13 >
每页显示 20 50 100
决策形式背景基于OE-协调性的属性约简
1
作者 常丽娜 魏玲 彭超林 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期188-196,共9页
属性约简作为形式概念分析中非常重要的一个研究分支,在三支概念分析中也同样重要。基于对象导出三支概念格,提出了保持决策形式背景OE-协调性的属性约简理论,丰富了三支概念分析的约简理论。首先,定义了决策形式背景的OE-协调集和OE-约... 属性约简作为形式概念分析中非常重要的一个研究分支,在三支概念分析中也同样重要。基于对象导出三支概念格,提出了保持决策形式背景OE-协调性的属性约简理论,丰富了三支概念分析的约简理论。首先,定义了决策形式背景的OE-协调集和OE-约简,并将属性按其特征分为3类。其次,指出OE-约简的本质就是极小OE-协调集,给出了OE-协调集的几个判定定理,通过研究OE-协调集的充要条件,获取OE-约简的判定定理。最后,给出OE-差别矩阵和OE-差别函数的定义,并给出了利用OE-差别矩阵和OE-差别函数计算OE-约简的方法。 展开更多
关键词 三支概念分析 属性约简 OE-协调性 决策形式背景 对象导出三支概念格
下载PDF
基于上下文信息与特征细化的无人机小目标检测算法 被引量:1
2
作者 彭晏飞 赵涛 +1 位作者 陈炎康 袁晓龙 《计算机工程与应用》 CSCD 北大核心 2024年第5期183-190,共8页
无人机航拍图像中的目标检测是近年来研究的热点,针对无人机视角下目标小而密集、背景复杂导致检测精度低的问题,提出一种基于上下文信息与特征细化的无人机小目标检测算法。通过上下文特征增强模块,利用多尺度扩张卷积捕获与周围区域... 无人机航拍图像中的目标检测是近年来研究的热点,针对无人机视角下目标小而密集、背景复杂导致检测精度低的问题,提出一种基于上下文信息与特征细化的无人机小目标检测算法。通过上下文特征增强模块,利用多尺度扩张卷积捕获与周围区域像素点的潜在关系,为网络补充上下文信息,并根据不同尺度的特征层自适应生成各层级特征图的输出权重,动态优化特征图表达能力;由于不同特征图细粒度不同,使用特征细化模块来抑制特征融合中冲突信息的干扰,防止小目标特征淹没在冲突信息中;设计了一种带权重的损失函数,加快模型收敛速度,进一步提高小目标检测精度。在VisDrone2021数据集进行大量实验表明,改进后的模型较基准模型mAP50提高8.4个百分点,mAP50:95提高5.9个百分点,FPS为42,有效提高了无人机航拍图像中小目标的检测精度。 展开更多
关键词 无人机 小目标检测 上下文信息 特征细化 损失函数
下载PDF
融合上下文感知和背景探索的伪装目标检测方法
3
作者 陈世洁 范李平 +1 位作者 余肖生 王东娟 《国外电子测量技术》 2024年第8期17-25,共9页
伪装目标检测(camouflaged object detection, COD)旨在检测出与周围环境高度相似的伪装目标。针对目前COD方法中检测结果不完整、边缘细节模糊的问题,提出了一种融合上下文感知和背景探索(CABENet)的伪装目标检测模型。首先,该模型利用... 伪装目标检测(camouflaged object detection, COD)旨在检测出与周围环境高度相似的伪装目标。针对目前COD方法中检测结果不完整、边缘细节模糊的问题,提出了一种融合上下文感知和背景探索(CABENet)的伪装目标检测模型。首先,该模型利用Swin-Transformer模型作为骨干网络,在多个尺度上提取全局上下文信息;其次,利用提出的注意力联级上下文感知模块扩大感受野,并从通道和空间两个维度增强网络的特征提取能力,再通过全连接解码器捕获隐藏对象的粗略位置图;最后,通过融合注意力机制的背景探索模块从背景信息中挖掘目标的边缘线索,加强伪装目标边缘特征的提取。在CHAMELEON、CAMO以及COD10K数据集上的实验结果表明,该方法在4个评估指标上的性能优于其他10个具有代表性的模型,在COD10K数据集上,平均绝对误差降至了0.026。 展开更多
关键词 伪装目标检测 上下文感知 注意力机制 背景探索
下载PDF
CIEFRNet:面向高速公路的抛洒物检测算法
4
作者 李旭 宋焕生 +3 位作者 史勤 张朝阳 刘泽东 孙士杰 《计算机工程与应用》 CSCD 北大核心 2024年第5期336-346,共11页
高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征... 高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征提纯的抛洒物检测算法,记为CIEFRNet。设计了一种融合上下文Transformer的主干特征提取模块(CSP-COT),充分挖掘局部静态上下文信息和全局动态上下文信息,增强小抛洒物的特征表示;主干网络中使用改进的空间金字塔池化(ISPP),通过级联的空洞卷积实现特征的多尺度下采样,减轻目标细节信息的损失;为提高特征融合能力,设计了特征提纯模块(CNAB),其中嵌入了提出的一种混合注意力机制(ECSA),可抑制图像背景噪声,强化微小抛洒物的特征;引入基于动态非单调聚焦机制的WIoU优化损失函数,提高小抛洒物学习能力,加速网络收敛。实验结果表明,所提方法在自制的高速公路抛洒物数据集上的精确率、召回率、AP0.5和AP0.5:0.95分别达到96.5%、81.6%、88.1%和46.5%,优于当前主流的目标检测方法,其算法复杂度也更低,满足实际场景应用需要。 展开更多
关键词 抛洒物检测 上下文信息 空间金字塔池化 注意力机制 损失函数
下载PDF
基于CS-YOLOv5s的无人机航拍图像小目标检测
5
作者 翁俊辉 成乐 +2 位作者 黄曼莉 隋皓 朱宏娜 《电子测量技术》 北大核心 2024年第7期157-162,共6页
无人机航拍图像存在小目标分布密集且目标尺度变化大等检测难点,本文提出一种面向无人机航拍图像小目标的跨尺度目标检测模型—CS-YOLOv5s。首先,在YOLOv5s基础上,引入小目标检测器,提高模型对小目标的捕捉能力;进一步,将最大池化分支... 无人机航拍图像存在小目标分布密集且目标尺度变化大等检测难点,本文提出一种面向无人机航拍图像小目标的跨尺度目标检测模型—CS-YOLOv5s。首先,在YOLOv5s基础上,引入小目标检测器,提高模型对小目标的捕捉能力;进一步,将最大池化分支嵌入上下文增强模块,提取并增强骨干网络尾部的深层特征,再注入PANet,实现深浅层特征有效融合和模型跨尺度检测能力的提升;同时采用SPDConv模块替换下采样卷积模块,实现无人机航拍图像中密集目标高效检测。实验表明,CS-YOLOv5s在数据集VisDrone2019达到42.0%mAP0.5,较基准模型提升9.8%,有效增强网络模型对无人机航拍图像小目标的识别能力,为无人机目标智能识别提供支撑。 展开更多
关键词 无人机航拍图像 YOLO 小目标检测器 上下文增强模块 SPDConv模块
下载PDF
基于结构感知和全局上下文信息的小目标检测 被引量:1
6
作者 李钟华 林初俊 +2 位作者 朱恒亮 廖诗宇 白云起 《计算机工程与应用》 CSCD 北大核心 2024年第9期292-298,共7页
在小目标检测任务中,由于小目标像素值少、特征不丰富和难提取等局限性,容易导致模型漏检、误检以及精度低等问题,提出了一种基于多尺度结构感知和全局上下文信息的小目标检测算法。针对复杂场景设计了多尺度结构感知模块,可以更好地捕... 在小目标检测任务中,由于小目标像素值少、特征不丰富和难提取等局限性,容易导致模型漏检、误检以及精度低等问题,提出了一种基于多尺度结构感知和全局上下文信息的小目标检测算法。针对复杂场景设计了多尺度结构感知模块,可以更好地捕获小目标的细节特征,以此增强模型识别不同尺寸物体的检测能力。为了获取更多的全局特征,借助Transformer捕获长距离依赖特征的优势设计了全局上下文信息模块,有效地建立起不同区域像素点之间的联系。针对模型训练时的梯度爆炸现象,设计了一种新的带权重损失函数W-CIoU,使得训练时的收敛速度有明显改善。大量的实验结果表明,提出的方法相较于其他经典的轻量级方法取得了较好的检测效果。与基准模型相比,提出的模型在VisDrone数据集上mAP50和mAP50:95分别提高了6.4和4.6个百分点,同时在TinyPerson数据集上也有着不错的表现。 展开更多
关键词 小目标检测 注意力机制 上下文信息 损失函数
下载PDF
基于特征重聚焦和精细化的遥感显著性目标检测
7
作者 朱海鹏 张宝华 +2 位作者 李永翔 徐利权 温海英 《传感器与微系统》 CSCD 北大核心 2024年第7期157-160,共4页
为了提升网络对特征的表征,提出一种基于特征重聚焦和精细化的光学遥感显著目标检测算法。利用相邻层特征交互捕获上下文语义互补信息,并通过膨胀卷积调节感受野提取信息的范围,完成初次特征聚焦。再将注意机制作用于深层特征,组成位置... 为了提升网络对特征的表征,提出一种基于特征重聚焦和精细化的光学遥感显著目标检测算法。利用相邻层特征交互捕获上下文语义互补信息,并通过膨胀卷积调节感受野提取信息的范围,完成初次特征聚焦。再将注意机制作用于深层特征,组成位置引导模块,增强对显著性特征的关注,完成特征重聚焦。最后,通过浅层特征获得显著特征注意图和反注意图,引导网络进一步挖掘高置信度显著区域和低置信度背景区域的信息,精细化优化后的特征。采用EORSSD和ORSSD 2个公开数据集进行实验与评估,以证明算法的有效性。 展开更多
关键词 光学遥感图像 显著性目标检测 相邻上下文协调 特征精细化 注意力机制
下载PDF
反向加权融合多尺度特征的X射线图像违禁品检测
8
作者 马昌嵩 裴晓芳 +2 位作者 周磊 周进 杨继海 《国外电子测量技术》 2024年第4期170-180,共11页
针对现阶段违禁品检测方法存在的混叠效应以及在类内变化显著的场景下检测精度较低等问题,提出一种反向加权融合多尺度特征的X射线图像违禁品检测算法,通过反向自适应地引导融合多尺度上下文特征来实现准确的违禁品目标检测。首先,使用... 针对现阶段违禁品检测方法存在的混叠效应以及在类内变化显著的场景下检测精度较低等问题,提出一种反向加权融合多尺度特征的X射线图像违禁品检测算法,通过反向自适应地引导融合多尺度上下文特征来实现准确的违禁品目标检测。首先,使用多尺度场景感知模块获取从局部到全局的目标表征信息,帮助处理显著的类内变化。其次,利用反向加权融合结构采用特征引导加权的方式,高效融合蕴含丰富上下文特征的多级特征,缓解融合过程中易出现的混叠效应。最后,设计了一种Focal-SIOU损失函数,用于平衡不同质量违禁品目标预测框之间的贡献差异,并结合角度和边长损失进一步提升预测框的收敛速度和回归精度。本文方法在SIXray、OPIXray、PIDray等3个非常具有挑战性的基准数据集上进行了广泛的评测实验,平均精度均值(mAP)分别达到93.2%、90.7%和85.1%。实验结果充分表明,方法相比于最新方法性能更优,并且能够满足实时目标检测的实际应用需求。 展开更多
关键词 违禁品检测 多尺度融合 上下文特征 损失函数
下载PDF
集成多种上下文与混合交互的显著性目标检测
9
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 全卷积网络 上下文信息
下载PDF
基于多尺度语义的目标检测方法 被引量:1
10
作者 曾溢良 张浩 吕志武 《计算机工程与设计》 北大核心 2024年第1期252-260,共9页
针对基于卷积神经网络(convolutional neural network,CNN)的检测方法只关注目标的自身信息,忽略了语义信息,限制目标检测精度提高的问题,提出一种多尺度语义提取网络,分别提取CNN多层特征图的语义信息并融合,实现目标全局语义和局部语... 针对基于卷积神经网络(convolutional neural network,CNN)的检测方法只关注目标的自身信息,忽略了语义信息,限制目标检测精度提高的问题,提出一种多尺度语义提取网络,分别提取CNN多层特征图的语义信息并融合,实现目标全局语义和局部语义的提取。在此基础上,将自身特征与语义特征融合,实现目标检测框架中自身特征和语义特征的编码。实验结果表明,该方法与原始的目标检测网络相比,检测精度有明显提高,尤其是对混叠目标和小目标具有良好的检测效果。 展开更多
关键词 目标检测 深度学习 语义信息 卷积神经网络 多层特征融合 混叠目标 小目标
下载PDF
基于双分支多头注意力的场景图生成方法
11
作者 王立春 付芳玉 +2 位作者 徐凯 徐洪波 尹宝才 《北京工业大学学报》 CAS CSCD 北大核心 2024年第10期1198-1205,共8页
针对已有场景图生成模型获取上下文信息有限的问题,提出一种有效的上下文融合模块,即双分支多头注意力(dual-stream multi-head attention, DMA)模块,并将DMA分别用于物体分类阶段和关系分类阶段,基于此提出基于双分支多头注意力的场景... 针对已有场景图生成模型获取上下文信息有限的问题,提出一种有效的上下文融合模块,即双分支多头注意力(dual-stream multi-head attention, DMA)模块,并将DMA分别用于物体分类阶段和关系分类阶段,基于此提出基于双分支多头注意力的场景图生成网络(dual-stream multi-head attention-based scene graph generation network, DMA-Net)。该网络由目标检测、物体语义解析和关系语义解析3个模块组成。首先,通过目标检测模块定位图像中的物体并提取物体特征;其次,使用物体语义解析模块中的节点双分支多头注意力(object dual-stream multi-head attention, O-DMA)获取融合了节点上下文的特征,该特征经过物体语义解码器获得物体类别标签;最后,通过关系语义解析模块中的边双分支多头注意力(relationship dual-stream multi-head attention, R-DMA)输出融合了边上下文的特征,该特征经过关系语义解码器输出关系类别标签。在公开的视觉基因组(visual genome, VG)数据集上分别计算了DMA-Net针对场景图检测、场景图分类和谓词分类3个子任务的图约束召回率和无图约束召回率,并与主流的场景图生成方法进行比较。实验结果表明,所提出的方法能够充分挖掘场景中的上下文信息,基于上下文增强的特征表示有效提升了场景图生成任务的精度。 展开更多
关键词 场景图生成 上下文融合 双分支多头注意力(dual-stream multi-head attention DMA) 目标检测 物体分类 关系分类
下载PDF
基于多模态联合语义感知的零样本目标检测
12
作者 段立娟 袁蓥 +1 位作者 王文健 梁芳芳 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期368-375,共8页
零样本目标检测借助语义嵌入作为引导信息,将未见过的物体的视觉特征与类别语义嵌入映射到同一空间,根据其在映射空间的距离进行分类,但由于语义信息获取的单一性,视觉信息缺乏可靠表示,易混淆背景信息和未见过对象信息,使得视觉和语义... 零样本目标检测借助语义嵌入作为引导信息,将未见过的物体的视觉特征与类别语义嵌入映射到同一空间,根据其在映射空间的距离进行分类,但由于语义信息获取的单一性,视觉信息缺乏可靠表示,易混淆背景信息和未见过对象信息,使得视觉和语义之间很难无差别对齐。基于此,借助视觉上下文模块捕捉视觉特征的上下文信息,并通过语义优化模块对文本上下文和视觉上下文信息进行交互融合,增加视觉表达的多样化,使模型感知到前景的辨别性语义,从而有效地实现零样本目标检测。在MS-COCO的2个划分数据集上进行实验,在零样本目标检测和广义零样本目标检测的准确率和召回率上取得了提升,结果证明了所提方法的有效性。 展开更多
关键词 目标检测 零样本目标检测 多模态 上下文感知 语义优化
下载PDF
“予取予求”结构及相关问题讨论
13
作者 李武伟 《阿坝师范学院学报》 2024年第2期116-120,共5页
《左传》是一部富有语言特色的先秦传世典籍。关于《左传·僖公七年》中“予取予求”的理解,学术界有两种不同的看法:一种是“从我取,从我求”,即宾语前置结构;一种是“我取我所需求的”,即主谓结构。通过对“予取予求”所在的语境... 《左传》是一部富有语言特色的先秦传世典籍。关于《左传·僖公七年》中“予取予求”的理解,学术界有两种不同的看法:一种是“从我取,从我求”,即宾语前置结构;一种是“我取我所需求的”,即主谓结构。通过对“予取予求”所在的语境、“予”在宾语前置结构中的使用、上古汉语中“予”作定语的情况、相类似的“代词+VP+代词+VP”的结构等四个方面的分析后认为:“予取予求”应理解为“从我取,从我求”,即宾语前置结构。对此结构的正确理解,不仅有助于丰富汉语的词汇,还有助于弘扬传承中华优秀传统文化。 展开更多
关键词 左传 予取予求 宾语前置 主谓结构 语境
下载PDF
面向船闸船舶的在线多目标跟踪技术研究
14
作者 仇耀宗 李琳 +1 位作者 郭皓捷 于清泽 《装备环境工程》 CAS 2024年第3期73-79,共7页
目的 满足船闸船舶在线跟踪要求,改善由于复杂背景、遮挡等因素导致轨迹不连续和身份变更的问题,提出一种增强上下文联系和上下文注意力的多目标跟踪方法。方法 基于设计的在线系统,采集连续帧图像,改进FairMOT多目标跟踪模型。首先,通... 目的 满足船闸船舶在线跟踪要求,改善由于复杂背景、遮挡等因素导致轨迹不连续和身份变更的问题,提出一种增强上下文联系和上下文注意力的多目标跟踪方法。方法 基于设计的在线系统,采集连续帧图像,改进FairMOT多目标跟踪模型。首先,通过在骨干网络设计基于Bottleneck和Contextual Transformer的上下文建模模块,以加强上下文联系,增强场景理解的能力。其次,在迭代聚合后的特征图上应用全局上下文注意力,提高定位船舶目标的能力。结果 相对于原生的Fair MOT方法,设计上下文建模模块后,多目标跟踪准确度指标MOTA提高2.1%,继续添加全局上下文注意力MOTA,共计提高3.5%,同时在多项指标中取得了最佳表现。结论 改进的Fair MOT方法不仅拥有更强的轨迹保持能力,而且在身份维持方面更胜一筹。 展开更多
关键词 在线多目标跟踪 船闸船舶 改进FairMOT 上下文联系 Contextual Transformer 上下文注意力
下载PDF
基于“三会”目标的数学课堂教学策略探究
15
作者 范晨锋 《成才之路》 2024年第13期93-96,共4页
在“双减”政策背景下,数学学科教学应聚焦于学生的学科能力及核心素养的全面培养。在数学课堂教学中,教师应逐步调整教学重心,转向教授学生如何运用数学的独特视角来洞察现实世界,如何借助数学的严谨思维来剖析现实世界,以及如何运用... 在“双减”政策背景下,数学学科教学应聚焦于学生的学科能力及核心素养的全面培养。在数学课堂教学中,教师应逐步调整教学重心,转向教授学生如何运用数学的独特视角来洞察现实世界,如何借助数学的严谨思维来剖析现实世界,以及如何运用数学的专业语言来精确描述现实世界。文章基于“三会”教学目标,从创设教学情境、培养生本数学眼光,渗透学法指导、强化生本数学思维,优创实践活动、发展生本数学语言等方面对数学课堂教学策略进行深入探讨,旨在全面提升学生的数学核心素养。 展开更多
关键词 “三会”目标 小学数学 教学情境 教学策略 核心素养
下载PDF
基于深度纹理特征的伪装目标边缘细化检测
16
作者 袁昊 葛海波 +2 位作者 辛世澳 胥冬梅 杨雨迪 《计算机工程》 CAS CSCD 北大核心 2024年第10期89-99,共11页
为解决传统伪装目标检测(COD)出现的空间信息不完整和目标边界模糊的问题,提出一种基于深度纹理特征的伪装目标边缘细化检测算法。该算法针对目标的纹理差异和边缘细节设计上下文纹理差异放大模块(CTDAM)、特征边界搜寻模块(FBSM)和边... 为解决传统伪装目标检测(COD)出现的空间信息不完整和目标边界模糊的问题,提出一种基于深度纹理特征的伪装目标边缘细化检测算法。该算法针对目标的纹理差异和边缘细节设计上下文纹理差异放大模块(CTDAM)、特征边界搜寻模块(FBSM)和边界推理模块(BIM)。CTDAM利用全局感受野覆盖和并行多分支混合卷积方式突出被遮挡的伪装目标的纹理差异;在注意力特征融合模块(AFFM)中引入局部注意力和位置通道感知并行注意力指导特征跨层融合,达到平衡局部信息和增强全局上下文语义信息的效果;FBSM利用自注意力机制将低层与高层特征相结合,处理不同边界像素点之间的依赖关系;BIM利用FBSM所提供的边界指导因子,指导融合后的特征推断出真实目标并细化边缘细节。在CAMO、CHAMELEON和COD 10K数据集上利用4个客观评估指标进行定量和定性实验,结果表明,该算法的检测性能优于对比的8种先进算法,在COD 10K数据集上,其平均绝对误差(MAE)达到了0.034。 展开更多
关键词 伪装目标检测 特征边界搜寻 注意力特征融合 上下文信息 纹理差异
下载PDF
融合时空上下文信息的强化学习小目标快速搜索
17
作者 姜虹 马姣姣 +3 位作者 姚红革 程嗣怡 陈游 喻钧 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3176-3186,共11页
人眼在搜索目标时,先基于此前的扫视经验粗略扫视,找到可能有目标的位置,再进行详细搜索.前者的扫视可称为基于时间上下文信息的扫视,后者可称为基于位置上下文信息的搜索.受人眼这种目标搜索模式启发,本文提出一种结合强化学习的时空... 人眼在搜索目标时,先基于此前的扫视经验粗略扫视,找到可能有目标的位置,再进行详细搜索.前者的扫视可称为基于时间上下文信息的扫视,后者可称为基于位置上下文信息的搜索.受人眼这种目标搜索模式启发,本文提出一种结合强化学习的时空上下文目标搜索方法.该方法基于强化学习搜索策略构建时间上下文模块,获得时间上下文信息;再通过构建一个自适应多尺度窗口提取位置上下文信息,两种信息在目标搜索过程中交替配合,完成目标搜索.实验结果表明,该方法在MS COCO数据集上较基准方法提升了2.9%,且可在5个搜索次数内找到目标. 展开更多
关键词 小目标检测 强化学习 时间上下文 位置上下文 人眼扫视
下载PDF
基于场景对象注意与深度图融合的深度估计 被引量:1
18
作者 温静 杨洁 《计算机工程》 CAS CSCD 北大核心 2023年第2期222-230,共9页
现有单目深度估计算法主要从单幅图像中获取立体信息,存在相邻深度边缘细节模糊、明显的对象缺失问题。提出一种基于场景对象注意机制与加权深度图融合的单目深度估计算法。通过特征矩阵相乘的方式计算特征图任意两个位置之间的相似特... 现有单目深度估计算法主要从单幅图像中获取立体信息,存在相邻深度边缘细节模糊、明显的对象缺失问题。提出一种基于场景对象注意机制与加权深度图融合的单目深度估计算法。通过特征矩阵相乘的方式计算特征图任意两个位置之间的相似特征向量,以快速捕获长距离依赖关系,增强用于估计相似深度区域的上下文信息,从而解决自然场景中对象深度信息不完整的问题。基于多尺度特征图融合的优点,设计加权深度图融合模块,为具有不同深度信息的多视觉粒度的深度图赋予不同的权值并进行融合,融合后的深度图包含深度信息和丰富的场景对象信息,有效地解决细节模糊问题。在KITTI数据集上的实验结果表明,该算法对目标图像预估时σ<1.25的准确率为0.879,绝对相对误差、平方相对误差和对数均方根误差分别为0.110、0.765和0.185,预测得到的深度图具有更加完整的场景对象轮廓和精确的深度信息。 展开更多
关键词 场景对象注意 加权深度图融合 上下文信息 深度估计 三维重建
下载PDF
基于上下文信息和多尺度融合重要性感知的特征金字塔网络算法 被引量:2
19
作者 杨昊 张轶 《计算机应用》 CSCD 北大核心 2023年第9期2727-2734,共8页
针对目标检测中分类和定位子任务分别需要大感受野和高分辨率,难以在这两个相互矛盾的需求间取得平衡的问题,提出一种用于目标检测的基于注意力机制的特征金字塔网络算法。该算法能整合多个不同感受野来获取更丰富的语义信息,以一种更... 针对目标检测中分类和定位子任务分别需要大感受野和高分辨率,难以在这两个相互矛盾的需求间取得平衡的问题,提出一种用于目标检测的基于注意力机制的特征金字塔网络算法。该算法能整合多个不同感受野来获取更丰富的语义信息,以一种更关注不同特征图重要性的方式融合多尺度特征图,并在注意力机制引导下进一步精练复杂融合后的特征图。首先,通过多尺度的空洞卷积获取多尺度感受野,在保留分辨率的同时增强语义信息;其次,通过多级特征融合(MLF)方式将多个不同尺度的特征图通过上采样或池化操作变为相同分辨率后融合;最后,利用注意力引导的特征精练模块(AFRM)对融合后的特征图作精练处理,丰富语义信息并消除融合带来的混叠效应。将所提特征金字塔替换Faster R-CNN中的特征金字塔网络(FPN)后在MS COCO 2017数据集上进行实验,结果表明当骨干网络为深度50和101的残差网络(ResNet)时,平均精度(AP)分别达到了39.2%和41.0%,与使用原FPN的Faster R-CNN相比,分别提高了1.4和1.0个百分点。可见,所提特征金字塔网络算法能替代原FPN,更好地应用在目标检测场景中。 展开更多
关键词 特征金字塔 目标检测 上下文信息 多尺度特征融合 注意力机制
下载PDF
改进YOLOv5的小目标检测算法 被引量:10
20
作者 俞军 贾银山 《计算机工程与应用》 CSCD 北大核心 2023年第12期201-207,共7页
虽然现在的深度学习技术在大中目标检测领域取得了惊人的进步,但是由于小目标的尺寸有限以及卷积网络的局限性,导致小目标检测仍然是一个具有挑战性的问题。通过改进YOLOv5算法,提出了一种针对小目标的YOLO-S模型。在原来三层输出层的... 虽然现在的深度学习技术在大中目标检测领域取得了惊人的进步,但是由于小目标的尺寸有限以及卷积网络的局限性,导致小目标检测仍然是一个具有挑战性的问题。通过改进YOLOv5算法,提出了一种针对小目标的YOLO-S模型。在原来三层输出层的基础上,利用级联网络,添加一个专门针对于小目标检测的输出层。为了补充上下文信息以及抑制多尺度特征融合冲突,设计了一种新的上下文信息提取模块CFM(Context Feature Module)以及基于通道和空间特征细化的模块FSM(feature specify module)。上采样方式由原来的最邻近插值替换为新设计的Transpose模块,可以将信息最大化恢复。数据集采用专门针对于小目标的VisDrone2019来验证算法的有效性。实验结果表明,YOLO-S比YOLOv5的mAP@0.5提高了6.9个百分点。 展开更多
关键词 YOLOv5 小目标检测 级联网络 上下文信息 特征细化
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部