Continental shelf islands are contributors of terrestrial sediment supply to shelf regions,and the sediment flux from these islands shall be quantified.We calculated the sediment flux of continental shelf islands in t...Continental shelf islands are contributors of terrestrial sediment supply to shelf regions,and the sediment flux from these islands shall be quantified.We calculated the sediment flux of continental shelf islands in the southeastern China using two empirical equations under two preconditions.The first,the sediment load/yield of the islands has the same pattern as the adjacent small,mountainous rivers along the coastline;and the second,each of the islands was treated as a single catchment.The results show that the sediment supply from these islands reached an order of magnitude of 1 Mt/a,which is comparable to the supply from the local smaller rivers.A sensitivity analysis indicates that this value represents the lower limit of estimate;if the accurate amount of sub-catchments of any island is considered,then this value will be enhanced slightly.This study demonstrates that the sediment supply from continental shelf islands to oceans is an important factor affecting the regional sedimentation and,therefore,should be paid with attention.展开更多
Near-inertial motion is an important dynamic process in the upper ocean and plays a significant role in mass, heat, and energy transport across the thermocline. In this study, the dissipation of wind-induced near-iner...Near-inertial motion is an important dynamic process in the upper ocean and plays a significant role in mass, heat, and energy transport across the thermocline. In this study, the dissipation of wind-induced near-inertial energy in the thermocline is investigated by using observation data collected in July and August 2005 during the tropical storm Washi by a moored system at(19°35′N, 112°E) in the continental shelf region off Hainan Island. In the observation period, the near-inertial part dominated the observed ocean kinetic energy and about 80% of the near-inertial energy dissipated in the upper layer. Extremely strong turbulent mixing induced by near-inertial wave was observed in the thermocline, where the turbulent energy dissipation rate increased by two orders of magnitude above the background level. It is found that the energy loss of near-inertial waves in the thermocline is mainly in the large-scales. This is different from the previous hypothesis based on "Kolmogorov cascade" turbulence theory that the kinetic energy is dissipated mainly by small-scale motions.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41625021,41876092,41576095,41906021)。
文摘Continental shelf islands are contributors of terrestrial sediment supply to shelf regions,and the sediment flux from these islands shall be quantified.We calculated the sediment flux of continental shelf islands in the southeastern China using two empirical equations under two preconditions.The first,the sediment load/yield of the islands has the same pattern as the adjacent small,mountainous rivers along the coastline;and the second,each of the islands was treated as a single catchment.The results show that the sediment supply from these islands reached an order of magnitude of 1 Mt/a,which is comparable to the supply from the local smaller rivers.A sensitivity analysis indicates that this value represents the lower limit of estimate;if the accurate amount of sub-catchments of any island is considered,then this value will be enhanced slightly.This study demonstrates that the sediment supply from continental shelf islands to oceans is an important factor affecting the regional sedimentation and,therefore,should be paid with attention.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41176011, U1133001, U0933001)Guangdong University Pearl River Scholar Bonus Schemes (Grant No. GDUPS-2010)
文摘Near-inertial motion is an important dynamic process in the upper ocean and plays a significant role in mass, heat, and energy transport across the thermocline. In this study, the dissipation of wind-induced near-inertial energy in the thermocline is investigated by using observation data collected in July and August 2005 during the tropical storm Washi by a moored system at(19°35′N, 112°E) in the continental shelf region off Hainan Island. In the observation period, the near-inertial part dominated the observed ocean kinetic energy and about 80% of the near-inertial energy dissipated in the upper layer. Extremely strong turbulent mixing induced by near-inertial wave was observed in the thermocline, where the turbulent energy dissipation rate increased by two orders of magnitude above the background level. It is found that the energy loss of near-inertial waves in the thermocline is mainly in the large-scales. This is different from the previous hypothesis based on "Kolmogorov cascade" turbulence theory that the kinetic energy is dissipated mainly by small-scale motions.