Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing rese...The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.展开更多
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an...Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.展开更多
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio...Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.展开更多
In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoi...In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium.展开更多
BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies inve...BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.展开更多
Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar comp...Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes.展开更多
Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level mon...Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus.展开更多
Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divid...Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divided into the self-control group(continuous non-invasive blood pressure monitoring and intermittent cuff non-invasive blood pressure monitoring,CNAP group)and propensity score matching group(only intermittent cuff non-invasive blood pressure measurement in previous craniotomy,PSM group);Goal-directed hemodynamic management in CNAP group included heart rate(HR),blood pressure(BP),stroke volume(SV),stroke variability(SVV),and systemic vascular resistance index(SVRI).The main index is to compare the troponin level within 72 hours after operation between the CNAP group and the PSM group;The secondary indicators are the comparison of the hemodynamic conditions between the CNAP group and the PSM at 10 specific time points.Results:The incidence of postoperative myocardial injury in the CNAP group was significantly lower than that in the PSM group(12%vs.30%,P=0.01);in the CNAP group hypotensive episodes(6 vs.3,P=0.01),positive balance of fluid therapy(700 vs.500 mL,P<0.001),more use of vasoactive drugs(29 vs.18,P=0.04),more stable hemodynamics medical status(P=0.03)were recorded.Conclusion:The hemodynamic management strategy based on continuous non-invasive blood pressure monitoring can reduce the incidence of myocardial injury after elective craniotomy and maintain a more stable hemodynamic state.展开更多
BACKGROUND In patients with type 2 diabetes mellitus(T2DM),the risk of hypoglycemia also occurs in at a time-in-range(TIR)of>70%.The hemoglobin glycation index(HGI)is considered the best single factor for predictin...BACKGROUND In patients with type 2 diabetes mellitus(T2DM),the risk of hypoglycemia also occurs in at a time-in-range(TIR)of>70%.The hemoglobin glycation index(HGI)is considered the best single factor for predicting hypoglycemia,and offers new perspectives for the individualized treatment of patients with well-controlled blood glucose levels that are easily ignored in clinical settings.All participants underwent a 7-days continuous glucose monitoring(CGM)using a retrospective CGM system.We obtained glycemic variability indices using the CGM system.We defined HGI as laboratory hemoglobin A1c minus the glucose management indicator.Patients were categorized into low HGI(HGI<0.5)and high HGI groups(HGI≥0.5)according to HGI median(0.5).Logistic regression and receiver operating characteristic curve analyses were used to determine the risk factors for hypoglycemia.RESULTS We included 129 subjects with T2DM(54.84±12.56 years,46%male)in the study.Median TIR score was 90%.The high HGI group exhibited lower TIR and greater time below range with higher hemoglobin A1c than the low HGI group;this suggests more glycemic excursions and an increased incidence of hypoglycemia in the high HGI group.Multivariate analyses revealed that mean blood glucose,standard deviation of blood glucose and HGI were independent risk factors for hypoglycemia.Receiver operating characteristic curve analysis indicated that the HGI was the best predictor of hypoglycemia.In addition,the optimal cut-off points for HGI,mean blood glucose,and standard deviation of blood glucose in predicting hypoglycemia were 0.5%,7.2 mmol/L and 1.4 mmol/L respectively.CONCLUSION High HGI was significantly associated with greater glycemic excursions and increased hypoglycemia in patients with TIR>70%.Our findings indicate that HGI is a reliable predictor of hypoglycemia in this population.展开更多
BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL system...BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.展开更多
Continuous glucose monitoring(CGM)is a popular technology among the diabetic population,especially in patients with type 1 diabetes and those with type 2 diabetes treated with insulin.The American Diabetes Association...Continuous glucose monitoring(CGM)is a popular technology among the diabetic population,especially in patients with type 1 diabetes and those with type 2 diabetes treated with insulin.The American Diabetes Association recommends standardization of CGM reports with visual cues,such as the ambulatory glucose profile.Nevertheless,interpreting this report requires training and time for CGM to be cost-efficient.In this work it has been proposed to incorporate Japanese candlestick charts in glucose monitoring.These graphs are used in price analysis in financial markets and are easier to view.Each candle provides extra information to make prudent decisions since it reports the opening,maximum,minimum and closing glucose levels of the chosen time frame,usually the daily one.The Japanese candlestick chart is an interesting tool to be considered in glucose control.This graphic representation allows identification of glucose trends easily through the colors of the candles and maximum and minimum glucose values.展开更多
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic...Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.展开更多
BACKGROUND Time in range(TIR),as a novel metric for glycemic control,has robust relevance with diabetic complications.Diabetic peripheral neuropathy(DPN)is characterized by sudomotor dysfunction.AIM To explore the rel...BACKGROUND Time in range(TIR),as a novel metric for glycemic control,has robust relevance with diabetic complications.Diabetic peripheral neuropathy(DPN)is characterized by sudomotor dysfunction.AIM To explore the relationship between TIR obtained from continuous glucose monitoring(CGM)and sudomotor function detected by SUDOSCAN in subjects with type 2 diabetes.METHODS The research enrolled 466 inpatients with type 2 diabetes.All subjects underwent 3-d CGM and SUDOSCAN.SUDOSCAN was assessed with electrochemical skin conductance in hands(HESC)and feet(FESC).Average feet ESC<60μS was defined as sudomotor dysfunction(+),otherwise it was sudomotor dysfunction(-).TIR refers to the percentage of time when blood glucose is between 3.9-10 mmol/L during 1 d period.RESULTS Among the enrolled subjects,135(28.97%)presented with sudomotor dysfunction.Patients with sudomotor dysfunction(+)showed a decreased level of TIR(P<0.001).Compared to the lowest tertile of TIR,the middle and the highest tertiles of TIR was associated with an obviously lower prevalence of sudomotor dysfunction(20.51%and 21.94%vs 44.52%)(P<0.001).In addition,with the increase of TIR,HESC and FESC increased(P<0.001).Regression analysis demonstrated that TIR was inversely and independently linked with the prevalence of sudomotor dysfunction after adjusting for confounding values(odds ratio=0.979,95%CI:0.971-0.987,P<0.001).CONCLUSION The tight glycemic control assessed by TIR is of vitally protective value for sudomotor dysfunction in type 2 diabetes mellitus.展开更多
Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperg...Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperglycemia can increase the risk of mortality in patients cared in the intensive care unit(ICU).In addition,severe and multiple hypoglycemia increases the risk of mortality when using insulin or intensive antidiabetic therapy.The innovation of continuous glucose monitoring(CGM)may help to alert medical caregivers with regard to the development of hyperglycemia and hypoglycemia,which may decrease the potential complications in patients in the ICU.The major limitation of CGM is the measurement of interstitial glucose levels rather than real-time blood glucose levels;thus,there will be a delay in the treatment of hyperglycemia and hypoglycemia in patients.Recently,the European Union approved a state-of-art artificial intelligence directed loop system coordinated by CGM and a continuous insulin pump for diabetes control,which may provide a practical way to prevent acute adverse glycemic events related to antidiabetic therapy in critically ill patients.In this mini-review paper,we describe the application of CGM to patients in the ICU and summarize the pros and cons of CGM.展开更多
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont...Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.展开更多
Indoor environmental quality(IEQ)significantly affects human health and wellbeing.Therefore,continuous IEQ monitoring and feedback is of great concern in both the industrial and academic communities.However,most exist...Indoor environmental quality(IEQ)significantly affects human health and wellbeing.Therefore,continuous IEQ monitoring and feedback is of great concern in both the industrial and academic communities.However,most existing studies only focus on developing sensors that cost-effectively promote IEQ measurement while ignoring interactions between the human side and IEQ monitoring.In this study,an intelligent IEQ monitoring and feedback system-the Intelligent Built Enviroment(IBEM)-is developed.Firstly,the IBEM hardware instrument integrates air temperature,relative humidity,CO_(2),particulate matter with an aerodynamic diameter no greater than _(2.5)μm(PM_(2.5)),and illuminance sensors within a small device.The accuracy of this integrated device was tested through a co-location experiment with reference sensors;the device exhibited a strong correlation with the reference sensors,with a slight deviation(R^(2)>0.97 and slopes between 1.01 and 1.05).Secondly,a wireless data transmission module,a cloud storage module,and graphical user interfaces(i.e.,a web platform and mobile interface)were built to establish a pathway for dataflow and interactive feedback with the occupants of the indoor environments.Thus,the IEQ parameters can be continuously monitored with a high spatiotemporal resolution,interactive feedback can be induced,and synchronous data collection on occupant satisfaction and objective environmental parameters can be realized.IBEM has been widely applied in 131 buildings in 18cities/areas in China,with 1188 sample locations.Among these applications,we report on the targeted IEQ diagnoses of two individual buildings and the exploration of relationships between subjective and objective IEQ data in detail here.This work demonstrates the great value of IBEM in both industrial and academic research.展开更多
Continuous blood glucose monitoring is important for the diagnosis,treatment,and study of diabetes. many organizations have been working on this subject in recent two decades. Glucose concentration in interstitial flu...Continuous blood glucose monitoring is important for the diagnosis,treatment,and study of diabetes. many organizations have been working on this subject in recent two decades. Glucose concentration in interstitial fluid is closely related to the blood glucose levels. Minimally invasive continuous blood glucose monitoring technology based on the glucose detection in interstitial fluid develops rapidly and gets more and more attentions from the patients and the doctors,due to its instantaneous real-time display of glucose level,"24/7"coverage,and the ability to characterize glycemic variability. According to the different detection methods,most of the continuous glucose monitoring technology could be divided into two kinds: subcutaneous implantation method and transdermal extraction method. This paper review s the recent development of minimally invasive blood glucose monitoring technology and instruments. The mainly remained challenges and related research directions are presented as well.展开更多
In this paper, we analyze the time series of site coordinates of 27 continuously monitoring GPS sites covered by the Crustal Movement Observation Network of China over the whole country. The data are obtained in the p...In this paper, we analyze the time series of site coordinates of 27 continuously monitoring GPS sites covered by the Crustal Movement Observation Network of China over the whole country. The data are obtained in the period from the beginning of the observation to the November of 2005. On the basis of data processing, we analyze the power spectrum density of coordinate component noise at each site and calculate the spectral indexes manifesting the noise property of each component. The spectral indexes indicate that for most sites, the noise of time series of each coordinate component can be addressed by the model of white noise + flicker noise; and for a small amount of sites, it can be described by the model of white noise + flicker noise + random walk noise. We also quantitatively estimate each noise component in the model by using the criterion of maximum likelihood estimation. The result shows that the white noise in the time series of GPS site coordinates does not constitute the main part of noise. Therefore, the error estimation of site movement parameters is usually too small, or too optimistic if we consider the white noise only. Correspondingly, if this factor is not fully considered in explaining these movement parameters, it might mislead the readers.展开更多
BACKGROUND Although dumping symptoms constitute the most common post-gastrectomy syndromes impairing patient quality of life,the causes,including blood sugar fluctuations,are difficult to elucidate due to limitations ...BACKGROUND Although dumping symptoms constitute the most common post-gastrectomy syndromes impairing patient quality of life,the causes,including blood sugar fluctuations,are difficult to elucidate due to limitations in examining dumping symptoms as they occur.AIM To investigate relationships between glucose fluctuations and the occurrence of dumping symptoms in patients undergoing gastrectomy for gastric cancer.METHODS Patients receiving distal gastrectomy with Billroth-I(DG-BI)or Roux-en-Y reconstruction(DG-RY)and total gastrectomy with RY(TG-RY)for gastric cancer(March 2018-January 2020)were prospectively enrolled.Interstitial tissue glycemic profiles were measured every 15 min,up to 14 d,by continuous glucose monitoring.Dumping episodes were recorded on 5 patient-selected days by diary.Within 3 h postprandially,dumping-associated glycemic changes were defined as a dumping profile,those without symptoms as a control profile.These profiles were compared.RESULTS Thirty patients were enrolled(10 DG-BI,10 DG-RY,10 TG-RY).The 47 early dumping profiles of DG-BI showed immediately sharp rises after a meal,which 47 control profiles did not(P<0.05).Curves of the 15 late dumping profiles of DG-BI were similar to those of early dumping profiles,with lower glycemic levels.DGRY and TG-RY late dumping profiles(7 and 13,respectively)showed rapid glycemic decreases from a high glycemic state postprandially to hypoglycemia,with a steeper drop in TG-RY than in DG-RY.CONCLUSION Postprandial glycemic changes suggest dumping symptoms after standard gastrectomy for gastric cancer.Furthermore,glycemic profiles during dumping may differ depending on reconstruction methods after gastrectomy.展开更多
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
基金supported in part by the Intelligent Policing and National Security Risk Management Laboratory 2023 Opening Project(No.ZHKFYB2304)the Fundamental Research Funds for the Central Universities(Nos.SCU2023D008,2023SCU12129)+2 种基金the Natural Science Foundation of Sichuan Province(No.2024NSFSC1449)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129)the Key Laboratory of Data Protection and Intelligent Management(Sichuan University),Ministry of Education.
文摘The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.
基金This work was financially supported by the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.32171399,32171456,and T2225010)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012261)the Science and Technology Program of Guangzhou,China(No.202103000076)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02),and Pazhou Lab,Guangzhou(No.PZL2021KF0003)FML would like to thank the National Natural Science Foundation of China(Nos.32171335 and 31900954)JL would like to thank the National Natural Science Foundation of China(No.62105380)the China Postdoctoral Science Foundation(No.2021M693686)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645).
文摘Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.
基金The authors would like to acknowledge financial support from the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.T2225010,32171399,and 32171456)+4 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02)Pazhou Lab,Guangzhou(No.PZL2021KF0003)The authors also would like to thank the funding support from the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,and State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab2211)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645)JL would like to thank the National Natural Science Foundation of China(No.62105380)and the China Postdoctoral Science Foundation(No.2021M693686).
文摘Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.
文摘In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium.
基金Supported by Health and Family Planning Project of Sichuan Province,No.17PJ069Tibet Autonomous Region Science and Technology Program,No.XZ202303ZY0011G.
文摘BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.
文摘Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes.
文摘Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus.
文摘Objective:To explore the effect of continuous non-invasive blood pressure monitoring on intraoperative hemodynamics and postoperative myocardial injury in craniotomy.Methods:120 cases of elective craniotomy were divided into the self-control group(continuous non-invasive blood pressure monitoring and intermittent cuff non-invasive blood pressure monitoring,CNAP group)and propensity score matching group(only intermittent cuff non-invasive blood pressure measurement in previous craniotomy,PSM group);Goal-directed hemodynamic management in CNAP group included heart rate(HR),blood pressure(BP),stroke volume(SV),stroke variability(SVV),and systemic vascular resistance index(SVRI).The main index is to compare the troponin level within 72 hours after operation between the CNAP group and the PSM group;The secondary indicators are the comparison of the hemodynamic conditions between the CNAP group and the PSM at 10 specific time points.Results:The incidence of postoperative myocardial injury in the CNAP group was significantly lower than that in the PSM group(12%vs.30%,P=0.01);in the CNAP group hypotensive episodes(6 vs.3,P=0.01),positive balance of fluid therapy(700 vs.500 mL,P<0.001),more use of vasoactive drugs(29 vs.18,P=0.04),more stable hemodynamics medical status(P=0.03)were recorded.Conclusion:The hemodynamic management strategy based on continuous non-invasive blood pressure monitoring can reduce the incidence of myocardial injury after elective craniotomy and maintain a more stable hemodynamic state.
基金Supported by Investigator-initiated Trial Research Funds from Eli Lilly and Co.and Amylin Pharmaceuticals,Inc.,No.A1570Natural Science Foundation of Guangdong Province,No.2018A030313915。
文摘BACKGROUND In patients with type 2 diabetes mellitus(T2DM),the risk of hypoglycemia also occurs in at a time-in-range(TIR)of>70%.The hemoglobin glycation index(HGI)is considered the best single factor for predicting hypoglycemia,and offers new perspectives for the individualized treatment of patients with well-controlled blood glucose levels that are easily ignored in clinical settings.All participants underwent a 7-days continuous glucose monitoring(CGM)using a retrospective CGM system.We obtained glycemic variability indices using the CGM system.We defined HGI as laboratory hemoglobin A1c minus the glucose management indicator.Patients were categorized into low HGI(HGI<0.5)and high HGI groups(HGI≥0.5)according to HGI median(0.5).Logistic regression and receiver operating characteristic curve analyses were used to determine the risk factors for hypoglycemia.RESULTS We included 129 subjects with T2DM(54.84±12.56 years,46%male)in the study.Median TIR score was 90%.The high HGI group exhibited lower TIR and greater time below range with higher hemoglobin A1c than the low HGI group;this suggests more glycemic excursions and an increased incidence of hypoglycemia in the high HGI group.Multivariate analyses revealed that mean blood glucose,standard deviation of blood glucose and HGI were independent risk factors for hypoglycemia.Receiver operating characteristic curve analysis indicated that the HGI was the best predictor of hypoglycemia.In addition,the optimal cut-off points for HGI,mean blood glucose,and standard deviation of blood glucose in predicting hypoglycemia were 0.5%,7.2 mmol/L and 1.4 mmol/L respectively.CONCLUSION High HGI was significantly associated with greater glycemic excursions and increased hypoglycemia in patients with TIR>70%.Our findings indicate that HGI is a reliable predictor of hypoglycemia in this population.
文摘BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.
文摘Continuous glucose monitoring(CGM)is a popular technology among the diabetic population,especially in patients with type 1 diabetes and those with type 2 diabetes treated with insulin.The American Diabetes Association recommends standardization of CGM reports with visual cues,such as the ambulatory glucose profile.Nevertheless,interpreting this report requires training and time for CGM to be cost-efficient.In this work it has been proposed to incorporate Japanese candlestick charts in glucose monitoring.These graphs are used in price analysis in financial markets and are easier to view.Each candle provides extra information to make prudent decisions since it reports the opening,maximum,minimum and closing glucose levels of the chosen time frame,usually the daily one.The Japanese candlestick chart is an interesting tool to be considered in glucose control.This graphic representation allows identification of glucose trends easily through the colors of the candles and maximum and minimum glucose values.
基金supported by NSFC(Grant No.U1562109 and 41774082)the National Major Research Plan(Grant No.2016YFC0601100and 2016ZX05004)the Project of Scientific Research and Technological Development,CNPC(Grant No.2017D-5006-16)
文摘Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.
基金National Natural Science Foundation of China,No.81774134 and No.81873174Natural Science Foundation of Jiangsu Province of China,No.BK20150558 and No.BK20171331+2 种基金Postdoctoral Foundation of Jiangsu Province of China,No.1501120CJiangsu Province 333 Talent Funding Project,No.BRA2017595Young Medical Key Talents Project of Jiangsu Province,No.QNRC2016902.
文摘BACKGROUND Time in range(TIR),as a novel metric for glycemic control,has robust relevance with diabetic complications.Diabetic peripheral neuropathy(DPN)is characterized by sudomotor dysfunction.AIM To explore the relationship between TIR obtained from continuous glucose monitoring(CGM)and sudomotor function detected by SUDOSCAN in subjects with type 2 diabetes.METHODS The research enrolled 466 inpatients with type 2 diabetes.All subjects underwent 3-d CGM and SUDOSCAN.SUDOSCAN was assessed with electrochemical skin conductance in hands(HESC)and feet(FESC).Average feet ESC<60μS was defined as sudomotor dysfunction(+),otherwise it was sudomotor dysfunction(-).TIR refers to the percentage of time when blood glucose is between 3.9-10 mmol/L during 1 d period.RESULTS Among the enrolled subjects,135(28.97%)presented with sudomotor dysfunction.Patients with sudomotor dysfunction(+)showed a decreased level of TIR(P<0.001).Compared to the lowest tertile of TIR,the middle and the highest tertiles of TIR was associated with an obviously lower prevalence of sudomotor dysfunction(20.51%and 21.94%vs 44.52%)(P<0.001).In addition,with the increase of TIR,HESC and FESC increased(P<0.001).Regression analysis demonstrated that TIR was inversely and independently linked with the prevalence of sudomotor dysfunction after adjusting for confounding values(odds ratio=0.979,95%CI:0.971-0.987,P<0.001).CONCLUSION The tight glycemic control assessed by TIR is of vitally protective value for sudomotor dysfunction in type 2 diabetes mellitus.
文摘Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperglycemia can increase the risk of mortality in patients cared in the intensive care unit(ICU).In addition,severe and multiple hypoglycemia increases the risk of mortality when using insulin or intensive antidiabetic therapy.The innovation of continuous glucose monitoring(CGM)may help to alert medical caregivers with regard to the development of hyperglycemia and hypoglycemia,which may decrease the potential complications in patients in the ICU.The major limitation of CGM is the measurement of interstitial glucose levels rather than real-time blood glucose levels;thus,there will be a delay in the treatment of hyperglycemia and hypoglycemia in patients.Recently,the European Union approved a state-of-art artificial intelligence directed loop system coordinated by CGM and a continuous insulin pump for diabetes control,which may provide a practical way to prevent acute adverse glycemic events related to antidiabetic therapy in critically ill patients.In this mini-review paper,we describe the application of CGM to patients in the ICU and summarize the pros and cons of CGM.
基金Funded by the National Natural Science Foundation of China(No.50878169)the Project of State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G201407)
文摘Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.
基金supported by the China National Key Research and Development(R&D)Program(2018YFE0106100)the National Science Foundation for Distinguished Young Scholars of China(51825802)+3 种基金the Innovative Research Groups of the National Natural Science Foundation of China(51521005)the Strategic Research and Consulting Project of Chinese Academy of Engineering(2021XY-3)the China Postdoctoral Science Foundation(2021M691789)Shuimu Tsinghua Scholar Program(2020SM001)。
文摘Indoor environmental quality(IEQ)significantly affects human health and wellbeing.Therefore,continuous IEQ monitoring and feedback is of great concern in both the industrial and academic communities.However,most existing studies only focus on developing sensors that cost-effectively promote IEQ measurement while ignoring interactions between the human side and IEQ monitoring.In this study,an intelligent IEQ monitoring and feedback system-the Intelligent Built Enviroment(IBEM)-is developed.Firstly,the IBEM hardware instrument integrates air temperature,relative humidity,CO_(2),particulate matter with an aerodynamic diameter no greater than _(2.5)μm(PM_(2.5)),and illuminance sensors within a small device.The accuracy of this integrated device was tested through a co-location experiment with reference sensors;the device exhibited a strong correlation with the reference sensors,with a slight deviation(R^(2)>0.97 and slopes between 1.01 and 1.05).Secondly,a wireless data transmission module,a cloud storage module,and graphical user interfaces(i.e.,a web platform and mobile interface)were built to establish a pathway for dataflow and interactive feedback with the occupants of the indoor environments.Thus,the IEQ parameters can be continuously monitored with a high spatiotemporal resolution,interactive feedback can be induced,and synchronous data collection on occupant satisfaction and objective environmental parameters can be realized.IBEM has been widely applied in 131 buildings in 18cities/areas in China,with 1188 sample locations.Among these applications,we report on the targeted IEQ diagnoses of two individual buildings and the exploration of relationships between subjective and objective IEQ data in detail here.This work demonstrates the great value of IBEM in both industrial and academic research.
基金supported by the National Natural Science Foundation of China (No.61176107,No.11204210,No.61428402,and No.61201039)the Key Program of Tianjin Natural Science Foundation (No.15JCZDJC36100)+1 种基金the National High Technology Research and Development Program of China (No.2012AA022602)the 111 Project of China (No.B07014)
文摘Continuous blood glucose monitoring is important for the diagnosis,treatment,and study of diabetes. many organizations have been working on this subject in recent two decades. Glucose concentration in interstitial fluid is closely related to the blood glucose levels. Minimally invasive continuous blood glucose monitoring technology based on the glucose detection in interstitial fluid develops rapidly and gets more and more attentions from the patients and the doctors,due to its instantaneous real-time display of glucose level,"24/7"coverage,and the ability to characterize glycemic variability. According to the different detection methods,most of the continuous glucose monitoring technology could be divided into two kinds: subcutaneous implantation method and transdermal extraction method. This paper review s the recent development of minimally invasive blood glucose monitoring technology and instruments. The mainly remained challenges and related research directions are presented as well.
基金Special project of China Earthquake Administration"Study on the Integrated Observation of Vertical Crustal Move-ment and Deformation of South-North Seismic Zone on the Chinese Mainland".
文摘In this paper, we analyze the time series of site coordinates of 27 continuously monitoring GPS sites covered by the Crustal Movement Observation Network of China over the whole country. The data are obtained in the period from the beginning of the observation to the November of 2005. On the basis of data processing, we analyze the power spectrum density of coordinate component noise at each site and calculate the spectral indexes manifesting the noise property of each component. The spectral indexes indicate that for most sites, the noise of time series of each coordinate component can be addressed by the model of white noise + flicker noise; and for a small amount of sites, it can be described by the model of white noise + flicker noise + random walk noise. We also quantitatively estimate each noise component in the model by using the criterion of maximum likelihood estimation. The result shows that the white noise in the time series of GPS site coordinates does not constitute the main part of noise. Therefore, the error estimation of site movement parameters is usually too small, or too optimistic if we consider the white noise only. Correspondingly, if this factor is not fully considered in explaining these movement parameters, it might mislead the readers.
文摘BACKGROUND Although dumping symptoms constitute the most common post-gastrectomy syndromes impairing patient quality of life,the causes,including blood sugar fluctuations,are difficult to elucidate due to limitations in examining dumping symptoms as they occur.AIM To investigate relationships between glucose fluctuations and the occurrence of dumping symptoms in patients undergoing gastrectomy for gastric cancer.METHODS Patients receiving distal gastrectomy with Billroth-I(DG-BI)or Roux-en-Y reconstruction(DG-RY)and total gastrectomy with RY(TG-RY)for gastric cancer(March 2018-January 2020)were prospectively enrolled.Interstitial tissue glycemic profiles were measured every 15 min,up to 14 d,by continuous glucose monitoring.Dumping episodes were recorded on 5 patient-selected days by diary.Within 3 h postprandially,dumping-associated glycemic changes were defined as a dumping profile,those without symptoms as a control profile.These profiles were compared.RESULTS Thirty patients were enrolled(10 DG-BI,10 DG-RY,10 TG-RY).The 47 early dumping profiles of DG-BI showed immediately sharp rises after a meal,which 47 control profiles did not(P<0.05).Curves of the 15 late dumping profiles of DG-BI were similar to those of early dumping profiles,with lower glycemic levels.DGRY and TG-RY late dumping profiles(7 and 13,respectively)showed rapid glycemic decreases from a high glycemic state postprandially to hypoglycemia,with a steeper drop in TG-RY than in DG-RY.CONCLUSION Postprandial glycemic changes suggest dumping symptoms after standard gastrectomy for gastric cancer.Furthermore,glycemic profiles during dumping may differ depending on reconstruction methods after gastrectomy.