期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
Coordinated Controller Tuning of a Boiler Turbine Unit with New Binary Particle Swarm Optimization Algorithm 被引量:1
1
作者 Muhammad Ilyas Menhas Ling Wang +1 位作者 Min-Rui Fei Cheng-Xi Ma 《International Journal of Automation and computing》 EI 2011年第2期185-192,共8页
Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) ... Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) algorithm,called probability based binary PSO (PBPSO),is presented to tune the parameters of a coordinated controller.The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO,modified binary PSO,and standard continuous PSO. 展开更多
关键词 Coordinated control boiler turbine unit particle swarm optimization (PSO) probability based binary particle swarm optimization (PBPSO) controller tuning.
下载PDF
SECURE STEGANOGRAPHY BASED ON BINARY PARTICLE SWARM OPTIMIZATION 被引量:2
2
作者 Guo Yanqing Kong Xiangwei You Xingang 《Journal of Electronics(China)》 2009年第2期285-288,共4页
The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,deve... The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,developing secure steganography is formulated as solving a constrained IP(Integer Programming) problem,which takes the relative entropy of cover and stego distributions as the objective function.Furthermore,a novel method is introduced based on BPSO(Binary Particle Swarm Optimization) for achieving the optimal solution of this programming problem.Experimental results show that the proposed method can achieve excellent performance on preserving neighboring co-occurrence features for JPEG steganography. 展开更多
关键词 Secure steganography Integer Programming(IP) binary particle swarm optimization(BPSO)
下载PDF
Intelligent Optimization Methods for the Design of an Overhead Travelling Crane 被引量:5
3
作者 QU Xiaogang XU Gening +1 位作者 FAN Xiaoning BI Xiaoheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期187-196,共10页
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding... In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods. 展开更多
关键词 crane metal structure design optimization continuous array element encoded model ant colony optimization particle swarm optimization genetic algorithm
下载PDF
A Binary Particle Swarm Optimization for the Minimum Weight Dominating Set Problem
4
作者 Geng Lin Jian Guan 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第2期305-322,共18页
The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solutio... The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms. 展开更多
关键词 metaheuristics binary particle swarm optimization tabu search dominating set problem combinatorial optimization
原文传递
Binary Particle Swarm Optimization Based Hyper-Heuristic for Solving the Set-Union Knapsack Problem
5
作者 CHEN Xiang LUO Jinyan LIN Geng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第4期305-314,共10页
The set-union knapsack problem(SUKP)is proved to be a strongly NP-hard problem,and it is an extension of the classic NP-hard problem:the 0-1 knapsack problem(KP).Solving the SUKP through exact approaches is computatio... The set-union knapsack problem(SUKP)is proved to be a strongly NP-hard problem,and it is an extension of the classic NP-hard problem:the 0-1 knapsack problem(KP).Solving the SUKP through exact approaches is computationally expensive.Therefore,several swarm intelligent algorithms have been proposed in order to solve the SUKP.Hyper-heuristics have received notable attention by researchers in recent years,and they are successfully applied to solve the combinatorial optimization problems.In this article,we propose a binary particle swarm optimization(BPSO)based hyper-heuristic for solving the SUKP,in which the BPSO is employed as a search methodology.The proposed approach has been evaluated on three sets of SUKP instances.The results are compared with 6 approaches:BABC,EMS,gPSO,DHJaya,b WSA,and HBPSO/TS,and demonstrate that the proposed approach for the SUKP outperforms other approaches. 展开更多
关键词 set-union knapsack problem binary programming HYPER-HEURISTICS particle swarm optimization
原文传递
Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems
6
作者 N. A. Khan S. Ghosh S. P. Ghoshal 《Energy and Power Engineering》 2013年第4期1005-1010,共6页
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no... This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization. 展开更多
关键词 Normal Load Flow Radial Distribution System Distributed Generation SHUNT Capacitors binary particle swarm optimization binary GRAVITATIONAL SEARCH Algorithm TOTAL line Loss TOTAL Voltage Deviation
下载PDF
Multi-objective allocation of measuring binary particle swarm optimization
7
作者 Khalil Gorgani FIROUZJAH Abdolreza SHEIKHOLESLAMI Taghi BARFOROUSHI 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第4期399-415,共17页
Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the... Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the network. Thus, monitoring scheme plays a main role in system analysis, control, and protection. To monitor the whole system using distributed measurements, strategic placement of them is needed. This paper improves a topological circuit observation method to minimize essential monitors. Besides the observability under normal condition of power networks, the observability of abnormal network is considered. Consequently, a high level of system reliability is carried out. In terms of reliability constraint, identification of bad measurement data in a given measurement system by making theme sure to be detectable is well done. Furthermore, it is maintained by a certain level of reliability against the single-line outages. Thus, observability is satisfied if all possible single line outages are plausible. Consideration of these limitations clears the role of utilizing an optimization algorithm. Hence, particle swarm optimization (PSO) is used to minimize monitoring cost and removing unobser-vable states under abnormal condition, simultaneously. The algorithm is tested in IEEE 14 and 30-bus test systems and Iranian (Mazandaran) Regional Electric Company. 展开更多
关键词 optimal allocation phasor measurement units observability binary particle swarm optimization
原文传递
Optimal Allocation of a Hybrid Wind Energy-Fuel Cell System Using Different Optimization Techniques in the Egyptian Distribution Network
8
作者 Adel A. Abou El-Ela Sohir M. Allam Nermine K. Shehata 《Energy and Power Engineering》 2021年第1期17-40,共24页
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio... This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City. 展开更多
关键词 Wind Energy System Proton Exchange Membrane Fuel Cell binary Crow Search Algorithm Discrete Jaya Algorithm binary particle swarm optimization Technique
下载PDF
基于改进二进制粒子群算法优化DBN的轴承故障诊断 被引量:1
9
作者 陈剑 黄志 +2 位作者 徐庭亮 孙太华 李雪原 《组合机床与自动化加工技术》 北大核心 2024年第1期168-173,共6页
针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN... 针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN的轴承故障诊断方法。提出用加权惯性权重改进BPSO迭代过程中的固定权重,再用改进BPSO优化DBN的隐含层神经元个数和学习率。该方法先对信号进行LMD,提取出各PF分量的散布熵和时域指标,并构建特征矩阵,然后把特征矩阵输入改进BPSO-DBN模型中训练,实现滚动轴承故障诊断和分类。采用试验轴承数据做验证并与其他诊断方法对比,结果表明,基于LMD和BPSO-DBN的滚动轴承故障诊断方法具有较好的故障识别率。 展开更多
关键词 局部均值分解 二进制粒子群优化算法 深度置信网络 滚动轴承故障诊断
下载PDF
非接触电导检测土壤养分离子的谱峰自动识别方法
10
作者 唐超礼 李浩 +5 位作者 王儒敬 王乐 黄青 王大朋 张家宝 陈翔宇 《智慧农业(中英文)》 CSCD 2024年第1期36-45,共10页
[目的/意义]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)在农业土壤养分离子检测方面发挥着重要作用。对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强... [目的/意义]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)在农业土壤养分离子检测方面发挥着重要作用。对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强农业土壤养分管理提供依据。然而,C4D信号的特征峰检测仍然存在无法自动精准识别、人工操作复杂、效率低等缺点。[方法]提出一种基于连续小波变换结合粒子群优化(Particle Swarm Optimization,PSO)和最大类间方差法(Otsu)的谱峰自动识别算法,旨在实现准确、高效、自动化的C4D信号峰识别。采用C4D检测样品溶液,得到离子谱图信号,对谱图信号进行连续小波变换,得到小波变换系数矩阵。通过搜索小波系数变换系数矩阵极值,识别出脊线和谷线。将小波系数矩阵转换为灰度图像,结合PSO和Otsu寻找最佳阈值,进一步对灰度图像的背景和目标分割,再结合原始谱图中的脊谷线识别谱图中的特征峰。[结果与讨论]测试含有41、61和102个峰的数据集,以受试者工作特性(Receiver Operating Characteristic,ROC)曲线和度量值作为评估峰值检测算法性能的准则。与其他方法相比,基于连续小波变换结合粒子群优化的最大类间方差法分割图像(Continuous Wavelet Transform C.ombined with Particle Swarm Optimization of Otsu to Segment Image,CWTSPSO)的谱峰自动识别算法的ROC曲线均保持在0.9以上,度量值分别为0.976、0.915和0.969。CWTSPSO能够有效检测出更多弱峰和重叠峰,同时检测出更少的假峰,有利于提升C4D信号的谱峰识别率和精准性。[结论]本研究提出的CWTSPSO能为非接触式电导检测农业土壤养分离子信号分析提供有力支持。 展开更多
关键词 非接触式电导检测 连续小波变换 粒子群优化算法 最大类间方差法 谱峰识别
下载PDF
基于相量测量单元优化配置的配电网谐波状态估计研究 被引量:1
11
作者 韩茂岳 尹忠东 +2 位作者 沈子伦 付瑜 汪泽州 《科学技术与工程》 北大核心 2024年第8期3243-3250,共8页
随着大量电力电子设备的接入,配电网谐波问题愈发严重。谐波状态估计的准确性直接影响到后续的谐波治理效果。相量测量单元(phasor measurement unit,PMU)可以实时测量节点电压与支路电流,可借助其实现谐波状态估计。然而目前PMU价格较... 随着大量电力电子设备的接入,配电网谐波问题愈发严重。谐波状态估计的准确性直接影响到后续的谐波治理效果。相量测量单元(phasor measurement unit,PMU)可以实时测量节点电压与支路电流,可借助其实现谐波状态估计。然而目前PMU价格较高,如何进行合理的优化配置保证全网谐波状态可观,同时提高谐波状态估计的准确性,是亟待解决的问题。首先构建以PMU经济配置和谐波状态估计精度最高为目标的PMU优化配置模型,并提出一种改进二进制粒子群-遗传混合算法用于求解。随后在实时仿真器中搭建IEEE14节点模型,选用均值插补法以及Vondrak滤波法进行数据处理并分析了优化所得多种PMU配置场景对谐波状态估计的影响。结果表明:所提算法从减少投资成本及降低谐波状态估计误差角度考虑,能够给出合理的PMU配置方案,有助于支撑工程决策。 展开更多
关键词 谐波可观性 相量测量单元(PMU)优化配置 二进制粒子群-遗传(BPSO-GA)混合算法 谐波状态估计
下载PDF
高光谱结合离散二进制粒子群算法对久保桃可溶性固形物含量的检测
12
作者 张立秀 张淑娟 +3 位作者 孙海霞 薛建新 景建平 崔添俞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期656-662,共7页
可溶性固形物(SSC)是评价久保桃内部品质的重要指标。传统的SSC检测有损、费时、费力;快速、无损检测久保桃的SSC含量对于其品质分级有着重要意义。离散二进制粒子群算法(BPSO)是在标准粒子群算法(PSO)的基础上,更新速度公式得到的,具... 可溶性固形物(SSC)是评价久保桃内部品质的重要指标。传统的SSC检测有损、费时、费力;快速、无损检测久保桃的SSC含量对于其品质分级有着重要意义。离散二进制粒子群算法(BPSO)是在标准粒子群算法(PSO)的基础上,更新速度公式得到的,具有精度高,收敛快的特点,多用于离散空间的优化问题。基于高光谱技术结合BPSO算法及BPSO的组合特征波长选择算法对久保桃的SSC含量预测进行研究。首先采集198个久保桃样本的高光谱信息,获取久保桃900~1700nm范围内的光谱信息,计算感兴趣区域的平均光谱作为有效光谱数据,同时测量久保桃的SSC值。采用K-S(Kennard-Stone)算法将样本划分为校正集(147个)和预测集(51个)。使用BPSO特征波长选择算法对久保桃的原始光谱数据进行特征波长提取,并与竞争性自适应重加权算法(CARS)、连续投影法(SPA)、无信息变量选择法(UVE)等特征波长选择算法比较。同时为了避免单一算法建模中的不稳定问题,提出了基于BPSO的一次组合(BPS0+CARS、BPSO+SPA、BPSO+UVE)和二次组合[(BPSO+CARS)-SPA]、[(BPSO+SPA)-SPA]、[(BPSO+UVE)-SPA]特征波长提取方法。基于上述10种特征波长提取方法分别建立支持向量机(LS-SVM)模型和遗传算法(GA)优化的支持向量机模型(GA-SVM)模型。结果表明,基于BPSO算法提取特征波长建立的模型预测性能均高于其他单一特征波长方法,建立的两种模型预测集决定系数R_(p)^(2)均达到0.97以上;基于BPSO的组合算法中,二次组合(BPSO+SPA)-SPA算法建立的LS-SVM在特征波长数量较少的情况下对久保桃SSC含量预测性能最高,校正集和预测集决定系数R_(c)^(2)为0.982,R_(p)^(2)为0.955,均方根误差RMSEC为0.108,RMSEP为0.139。该模型预测性能略低于BPSO算法,但其仅用了22个特征波长进行建模,极大地简化了模型。说明(BPSO+SPA)-SPA是一种有效的特征波长提取方法,为水果SSC含量的无损检测提供了新的检测方法。 展开更多
关键词 高光谱 离散二进制算法 特征光谱变量 久保桃 可溶性固形物
下载PDF
基于GA-PSO混合优化SVM的机载EHA故障诊断
13
作者 覃刚 葛益波 +1 位作者 姚叶明 周清和 《液压与气动》 北大核心 2024年第5期168-180,共13页
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Opti... 针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。 展开更多
关键词 机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类SVM
下载PDF
基于混合离散粒子群优化的控制模式分配算法
14
作者 曾裕钦 蔡华洋 +3 位作者 周茹平 刘耿耿 黄兴 徐宁 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2836-2849,共14页
连续微流控生物芯片是生物化学实验自动化、微型化的革命性技术.多路复用器的控制模式分配作为连续微流控生物芯片自动化设计的关键环节之一,是难的NP(Non-deterministic Polynomial)优化问题.现有工作采用粒子群优化算法求解控制模式... 连续微流控生物芯片是生物化学实验自动化、微型化的革命性技术.多路复用器的控制模式分配作为连续微流控生物芯片自动化设计的关键环节之一,是难的NP(Non-deterministic Polynomial)优化问题.现有工作采用粒子群优化算法求解控制模式分配问题存在过早陷入局部最优解、收敛速度慢以及算法稳定性差的缺点.为此,本文提出一种连续微流控生物芯片下基于混合离散粒子群优化的控制模式分配算法.首先,为了加快算法收敛速度及避免过早陷入局部最优解,提出了离散的自适应区域搜索策略.其次,通过基于样例的社会学习机制提高了算法的稳定性.然后,采用等距抽值的方式筛选出自适应区域搜索策略中重要参数的最佳组合,以进一步提高分配方案的质量.最终实验结果表明,所提算法在多路复用器中阀门使用数量上平均优化了19.01%,在算法稳定性上提高了29.18%,且在现实的生化应用中有良好的性能表现. 展开更多
关键词 连续微流控生物芯片 控制模式分配 离散粒子群优化 样例学习 自适应区域搜索
下载PDF
微分光谱变换方法对土壤重金属含量反演精度的影响研究
15
作者 白宗璠 韩玲 +1 位作者 姜旭海 武春林 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1449-1456,共8页
随着我国工农业的日益发展,土壤中以镍(Ni)、铁(Fe)、铜(Cu)、铬(Cr)、铅(Pb)等为代表的重金属污染对人类生活产生了严重影响。高光谱遥感技术具有实时、无损、快速等优点,为高效准确地获取土壤重金属含量提供了科学手段。而在利用高光... 随着我国工农业的日益发展,土壤中以镍(Ni)、铁(Fe)、铜(Cu)、铬(Cr)、铅(Pb)等为代表的重金属污染对人类生活产生了严重影响。高光谱遥感技术具有实时、无损、快速等优点,为高效准确地获取土壤重金属含量提供了科学手段。而在利用高光谱数据反演土壤重金属含量时,微分光谱变换方法的选择对遥感反演土壤重金属含量的精度有显著影响。为明确二者关系,基于研究区采集的60个土壤样品,测定其Ni、Fe、Cr、Cu、Pb等含量以及350~2500 nm波段范围的光谱反射率。在相关系数(CC)分析法的基础上通过改进离散粒子群算法(MDBPSO)优选遥感探测土壤重金属含量的特征波段。最终以优选出的特征波段作为自变量利用随机森林(RF)算法构建了Ni、Fe、Cr、Cu、Pb等重金属含量的估测模型。在对原始反射率数据进行高斯平滑的基础上,对比分析了一阶微分(R′)、对数倒数的一阶微分(1/lgR)′、倒数的一阶微分(1/R)′、指数的一阶微分(e^(R))′四种微分光谱变换方法对土壤重金属反演精度的影响。结果表明,在CC分析法的基础上,MDBPSO算法可以有效地降低光谱数据的冗余度,提高模型的运行效率。其中R′、(1/lgR)′、(1/R)′、(e^(R))′中对Ni、Fe、Cr、Cu、Pb敏感的特征波段个数分别至少减少了154、363、135、744和889个。(1/lgR)′、R′、R′、(1/R)′、R′光谱变换方法分别应用到Ni、Fe、Cr、Cu、Pb特征波段的组合运算中,得到的估测模型的精度优于其他微分变换方法;模型检验集的决定系数分别为0.913、0.906、0.872、0.912、0.876,均方根误差分别为0.743、0.095、2.588、1.541、1.453。本研究为利用遥感数据反演土壤重金属含量微分光谱变换方法的选择提供了科学的参考,为进一步实现土壤重金属含量的大面积高精度遥感监测提供新的思路。 展开更多
关键词 遥感 高光谱 土壤 光谱变换方法 重金属 改进离散粒子群 随机森林
下载PDF
基于CBPSO的板级电路测试性设计优化方法研究 被引量:2
16
作者 吕晓明 刘晓芹 +1 位作者 黄考利 刘耀周 《系统工程学报》 CSCD 北大核心 2010年第6期791-797,共7页
基于边界扫描的板级电路在测试性改善一定条件下,设计复杂性最小化问题属于组合优化问题,同时也是NP-难题.针对该组合优化问题提出了基于混沌二进制粒子群优化的求解方法.该方法在二进制粒子群优化的基础上,对当前最佳粒子以变概率进行... 基于边界扫描的板级电路在测试性改善一定条件下,设计复杂性最小化问题属于组合优化问题,同时也是NP-难题.针对该组合优化问题提出了基于混沌二进制粒子群优化的求解方法.该方法在二进制粒子群优化的基础上,对当前最佳粒子以变概率进行混沌优化,引导粒子跳出局部最优继续在全局范围内搜索,从而克服二进制粒子群的"早熟"收敛.通过实例验证,该算法在优化效果、搜索效率等方面均获得了较好的结果.事实证明,该算法能有效地应用于板级电路的测试性设计优化. 展开更多
关键词 测试性设计 边界扫描 板级电路 混沌优化 二进制粒子群优化
下载PDF
时间最优链斗式连续卸船机寻舱轨迹规划研究
17
作者 刘雪莲 王欣 +1 位作者 姜鑫 吴庆贺 《机械设计与制造》 北大核心 2024年第9期16-21,共6页
为提高链斗式连续卸船机卸船效率,实现智能化取料作业,提出了一种基于麻雀搜索算法(SSA)优化取料装置寻舱轨迹时间最优的方法。采用3-3-5-3-3分段多项式插值,以连续卸船机各关节速度及加速度作为约束条件,采用麻雀搜索算法对各段轨迹进... 为提高链斗式连续卸船机卸船效率,实现智能化取料作业,提出了一种基于麻雀搜索算法(SSA)优化取料装置寻舱轨迹时间最优的方法。采用3-3-5-3-3分段多项式插值,以连续卸船机各关节速度及加速度作为约束条件,采用麻雀搜索算法对各段轨迹进行优化。将麻雀搜索算法的优化结果与粒子群算法进行对比,结果表明麻雀算法优化结果比粒子群算法优化结果时间更少,大大提高连续卸船机的整体卸船效率;同时,麻雀算法具有较好的搜索能力,收敛能力强,在进行时间最优轨迹规划上效果较好。 展开更多
关键词 连续卸船机 麻雀搜索算法 粒子群算法 轨迹规划 仿真
下载PDF
基于神经网络的“回南天”观测数据质量控制方法初探
18
作者 王乙竹 陶伟 陆思宇 《气象研究与应用》 2024年第2期37-44,共8页
为判别“回南天”观测设备数据可靠性,基于传统反向传播神经网络(BPNN),结合粒子群优化算法(PSOBPNN),对广西“回南天”观测数据进行质量控制研究。结果表明:(1)在模型估算温度与实测温度对比验证中,与BPNN模型相比,PSO-BPNN模型精度更... 为判别“回南天”观测设备数据可靠性,基于传统反向传播神经网络(BPNN),结合粒子群优化算法(PSOBPNN),对广西“回南天”观测数据进行质量控制研究。结果表明:(1)在模型估算温度与实测温度对比验证中,与BPNN模型相比,PSO-BPNN模型精度更高,PSO-BPNN模型没有明显高估或低估,而BPNN模型在10℃附近出现较大偏差。(2)在使用测试集数据对模型进行测试中,瓷砖地面和墙面温度在10~30℃范围,模型的适用性更强,PSO-BPNN模型稳定性优于BPNN模型。(3)在随机添加人工误差进行的模型检验中,PSO-BPNN模型瓷砖地面、墙面、水泥地面温度的最佳质量控制参数分别为1.73、1.64、1.68,BPNN模型分别为1.82、1.83、1.78。 展开更多
关键词 质量控制 反向传播神经网络 粒子群优化 “回南天”
下载PDF
基于可重构智能表面的信息调制与空分多址
19
作者 操文政 金梁 +1 位作者 肖帅芳 易鸣 《信息工程大学学报》 2024年第1期9-16,共8页
为了减小当前大规模天线系统中高射频成本和高功耗带来的发展限制,将可重构智能表面(Reconfigurable Intelligent Surface,RIS)技术引入新型发射机设计中,提出了一种基于可重构智能表面的信息调制与空分多址方案。通过控制RIS反射系数... 为了减小当前大规模天线系统中高射频成本和高功耗带来的发展限制,将可重构智能表面(Reconfigurable Intelligent Surface,RIS)技术引入新型发射机设计中,提出了一种基于可重构智能表面的信息调制与空分多址方案。通过控制RIS反射系数实现信息的调制,同时形成指向多个用户包含不同信息的空间波束,实现多用户空分多址,具有低硬件复杂度、低成本、低功耗、易集成等优点。以双用户双流发送为例,基于二进制粒子群算法给出了方案的具体实现,并进行了仿真评估。仿真结果表明,该方案能完成面向双用户的双流信号同时同频的2幅移键控(Amplitude Shift Keying,ASK)调制,并通过空分多址发送给两个用户。 展开更多
关键词 可重构智能表面 信息调制 空分多址 二进制粒子群算法
下载PDF
基于同伦延拓的冗余机械臂逆运动学优化算法研究
20
作者 张国庆 李宗道 +2 位作者 吴剑雄 顾浩宇 李清都 《包装工程》 CAS 北大核心 2024年第7期197-204,共8页
目的针对偏置冗余机械臂的逆运动学,采用传统数值法存在依赖初始值、奇异位姿收敛性差等问题,提出一种改进数值法。方法首先将非线性方程组转化为同伦方程组,引入同伦延拓算法能够有效避免依赖初始值的问题,同时能够获取逆运动学解空间... 目的针对偏置冗余机械臂的逆运动学,采用传统数值法存在依赖初始值、奇异位姿收敛性差等问题,提出一种改进数值法。方法首先将非线性方程组转化为同伦方程组,引入同伦延拓算法能够有效避免依赖初始值的问题,同时能够获取逆运动学解空间。然后考虑奇异位姿,将同伦方程组转化为最小二乘问题,采用Levenberg Marquardt算法对同伦方程组进行路径追踪,以获取逆运动学解空间。最后将关节极限避免问题映射为解空间优化问题,引入二进制改进粒子群优化算法,获得最优逆运动学解。结果实验结果表明,相较于传统数值法,文中所提数值法针对逆运动学求解具有更高的收敛率、更快的收敛速度,同时二进制改进粒子群算法能够有效避免关节极限问题。结论采用文中所提数值法求解逆运动学的精度较高,能够满足实时性要求,对于机械臂用于包装作业具有一定的理论意义和工程应用价值。 展开更多
关键词 冗余机械臂 逆运动学 Levenberg Marquardt 同伦延拓 二进制改进粒子群算法
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部