Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD)...Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area.展开更多
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the...In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system.展开更多
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar...The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.展开更多
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was...Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme.展开更多
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ...A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.展开更多
In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to pred...In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to predict the continuous B-cell epitopes, and finally the predictive model for the B-cells epitopes was established. Comparing with the other predictive models, the prediction performance of this model is more excellent (AUC = 0.723). For the purpose of verifying the performance of the model, the prediction to the SWISS PROT NUMBER: P08677 was carried on, and the satisfying results were obtained.展开更多
In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The pro...In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.展开更多
In order to explore the structural features of neural networks and the ap-proaches to local interconnection,the geometrical structural information is introduced tothe Hopfield neural network model which is applied to ...In order to explore the structural features of neural networks and the ap-proaches to local interconnection,the geometrical structural information is introduced tothe Hopfield neural network model which is applied to associative memory.The dynamicsof the recalling is studied theoretically and cxpcrimcntally.The rcsults show that the geo-metrical structural information is helpless to the associative memory of monolayeredneural networks,furthermore,it makes the error probability increased.If the geometricalstructural information of the stored patterns is necessary to be introduced,somc new ap-proaches have to be explored.展开更多
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonli...The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.展开更多
The algorithm for VLSI channel routing using Hopfield neural model is discussed inthis paper.The basic methods of mapping VLSI channel routing problem to Hopfield neural net-work,constructing energy function,setting i...The algorithm for VLSI channel routing using Hopfield neural model is discussed inthis paper.The basic methods of mapping VLSI channel routing problem to Hopfield neural net-work,constructing energy function,setting initial neural status,and selecting various parametersare proposed.Finally,some experimental results are given.展开更多
To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating ma...To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids.展开更多
基金the National Natural Science Foundation of China,No.30870649the Natural Science Foundation of Tianjin,No.08JCYBJC03300
文摘Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area.
基金Supported by the National Natural Science Foundation of China(No.51975164)the China Scholarship Council(No.201908230358)the Fundamental Research Fundation for Universities of Heilongjiang Province。
文摘In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)the Natural Science Foundation of Jilin Province,China (Grant No. 201115222)
文摘The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.
文摘Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme.
文摘A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
文摘In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to predict the continuous B-cell epitopes, and finally the predictive model for the B-cells epitopes was established. Comparing with the other predictive models, the prediction performance of this model is more excellent (AUC = 0.723). For the purpose of verifying the performance of the model, the prediction to the SWISS PROT NUMBER: P08677 was carried on, and the satisfying results were obtained.
文摘In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.
文摘In order to explore the structural features of neural networks and the ap-proaches to local interconnection,the geometrical structural information is introduced tothe Hopfield neural network model which is applied to associative memory.The dynamicsof the recalling is studied theoretically and cxpcrimcntally.The rcsults show that the geo-metrical structural information is helpless to the associative memory of monolayeredneural networks,furthermore,it makes the error probability increased.If the geometricalstructural information of the stored patterns is necessary to be introduced,somc new ap-proaches have to be explored.
基金The project was supported by the National Natural Science Foundation of China (60375014) and the Postdoctoral Sci-ence Foundation of China
文摘The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
文摘The algorithm for VLSI channel routing using Hopfield neural model is discussed inthis paper.The basic methods of mapping VLSI channel routing problem to Hopfield neural net-work,constructing energy function,setting initial neural status,and selecting various parametersare proposed.Finally,some experimental results are given.
基金supported by the National Natural Science Foundation of China(No.12102177)the Natural Science Foundation of Jiangsu Province(No.BK20220130).
文摘To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids.